Standard

Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III. / Mogulskii, Anatolii Alfredovich; Prokopenko, Evgenii Igorevich.

в: Сибирские электронные математические известия, Том 15, 01.01.2018, стр. 528-553.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Mogulskii, AA & Prokopenko, EI 2018, 'Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III', Сибирские электронные математические известия, Том. 15, стр. 528-553. https://doi.org/10.17377/semi.2018.15.043

APA

Vancouver

Mogulskii AA, Prokopenko EI. Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III. Сибирские электронные математические известия. 2018 янв. 1;15:528-553. doi: 10.17377/semi.2018.15.043

Author

Mogulskii, Anatolii Alfredovich ; Prokopenko, Evgenii Igorevich. / Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III. в: Сибирские электронные математические известия. 2018 ; Том 15. стр. 528-553.

BibTeX

@article{62937b1a268341bb98cae885b6ea9082,
title = "Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III",
abstract = "In the work, which consists of 4 papers (the article and [3]-[5]), we obtain integro-local limit theorems in the phase space for multidimensional compound renewal processes, when Cramer's condition holds. In the part III (the article) we consider the so-called second renewal process in a regular deviation region.",
keywords = "Compound multidimensional renewal process, Cramer's condition, Deviation (rate) function, Integro-local limit theorems, Large deviations, Renewal measure, Second deviation (rate) function, Second renewal process, compound multidimensional renewal process, second renewal process, large deviations, integro-local limit theorems, renewal measure, Cramer's condition, deviation (rate) function, second deviation (rate) function",
author = "Mogulskii, {Anatolii Alfredovich} and Prokopenko, {Evgenii Igorevich}",
year = "2018",
month = jan,
day = "1",
doi = "10.17377/semi.2018.15.043",
language = "English",
volume = "15",
pages = "528--553",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III

AU - Mogulskii, Anatolii Alfredovich

AU - Prokopenko, Evgenii Igorevich

PY - 2018/1/1

Y1 - 2018/1/1

N2 - In the work, which consists of 4 papers (the article and [3]-[5]), we obtain integro-local limit theorems in the phase space for multidimensional compound renewal processes, when Cramer's condition holds. In the part III (the article) we consider the so-called second renewal process in a regular deviation region.

AB - In the work, which consists of 4 papers (the article and [3]-[5]), we obtain integro-local limit theorems in the phase space for multidimensional compound renewal processes, when Cramer's condition holds. In the part III (the article) we consider the so-called second renewal process in a regular deviation region.

KW - Compound multidimensional renewal process

KW - Cramer's condition

KW - Deviation (rate) function

KW - Integro-local limit theorems

KW - Large deviations

KW - Renewal measure

KW - Second deviation (rate) function

KW - Second renewal process

KW - compound multidimensional renewal process

KW - second renewal process

KW - large deviations

KW - integro-local limit theorems

KW - renewal measure

KW - Cramer's condition

KW - deviation (rate) function

KW - second deviation (rate) function

UR - http://www.scopus.com/inward/record.url?scp=85067295988&partnerID=8YFLogxK

UR - https://www.elibrary.ru/item.asp?id=36998757

U2 - 10.17377/semi.2018.15.043

DO - 10.17377/semi.2018.15.043

M3 - Article

AN - SCOPUS:85067295988

VL - 15

SP - 528

EP - 553

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 20633872