Standard

Influence of distributed heavy-gas injection on stability and transition of supersonic boundary-layer flow. / Lysenko, V. I.; Gaponov, S. A.; Smorodsky, B. V. и др.

в: Physics of Fluids, Том 31, № 10, 104103, 01.10.2019.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Lysenko VI, Gaponov SA, Smorodsky BV, Yermolaev YG, Kosinov AD. Influence of distributed heavy-gas injection on stability and transition of supersonic boundary-layer flow. Physics of Fluids. 2019 окт. 1;31(10):104103. doi: 10.1063/1.5112145

Author

Lysenko, V. I. ; Gaponov, S. A. ; Smorodsky, B. V. и др. / Influence of distributed heavy-gas injection on stability and transition of supersonic boundary-layer flow. в: Physics of Fluids. 2019 ; Том 31, № 10.

BibTeX

@article{adae2a00f949485c96eca810e56a3252,
title = "Influence of distributed heavy-gas injection on stability and transition of supersonic boundary-layer flow",
abstract = "This study performed a joint theoretical and experimental investigation of the influence of distributed normal-to-the-surface and inclined heavy-gas injection into the near-wall sublayer of a boundary layer through a permeable wall on the laminar-turbulent transition (LTT). Sulfur hexafluoride (SF6) is used as a foreign gas for injection into the boundary layer. It also assessed stability in relation to both natural and artificial (controlled) disturbances of a supersonic flat-plate boundary layer at a free-stream Mach number (M) of 2. It is established, theoretically, that the action of a large molecular weight gas injection on the boundary layer is similar to the action of wall cooling and leads to an increase in boundary layer stability and LTT delay. The influence of injection on the position of transition is estimated by means of the eN method. Principally, the analysis shows the possibility of increasing the transition Reynolds number by means of SF6 injection. Controlled disturbances are introduced in the model boundary layer by means of a point harmonic glow-discharge disturbance generator and are measured by using a hot-wire anemometer. For the first time, it is shown experimentally that distributed injection of the heavy SF6 gas leads to boundary layer stabilization. This is mostly due to the reduction in growth rates of disturbances at higher frequencies, while the LTT shifted to higher Reynolds number values. Good qualitative agreement is achieved between the experimental data obtained with artificially generated disturbances and computations based on linear stability theory.",
keywords = "LAMINAR",
author = "Lysenko, {V. I.} and Gaponov, {S. A.} and Smorodsky, {B. V.} and Yermolaev, {Y. G.} and Kosinov, {A. D.}",
year = "2019",
month = oct,
day = "1",
doi = "10.1063/1.5112145",
language = "English",
volume = "31",
journal = "Physics of Fluids",
issn = "1070-6631",
publisher = "American Institute of Physics",
number = "10",

}

RIS

TY - JOUR

T1 - Influence of distributed heavy-gas injection on stability and transition of supersonic boundary-layer flow

AU - Lysenko, V. I.

AU - Gaponov, S. A.

AU - Smorodsky, B. V.

AU - Yermolaev, Y. G.

AU - Kosinov, A. D.

PY - 2019/10/1

Y1 - 2019/10/1

N2 - This study performed a joint theoretical and experimental investigation of the influence of distributed normal-to-the-surface and inclined heavy-gas injection into the near-wall sublayer of a boundary layer through a permeable wall on the laminar-turbulent transition (LTT). Sulfur hexafluoride (SF6) is used as a foreign gas for injection into the boundary layer. It also assessed stability in relation to both natural and artificial (controlled) disturbances of a supersonic flat-plate boundary layer at a free-stream Mach number (M) of 2. It is established, theoretically, that the action of a large molecular weight gas injection on the boundary layer is similar to the action of wall cooling and leads to an increase in boundary layer stability and LTT delay. The influence of injection on the position of transition is estimated by means of the eN method. Principally, the analysis shows the possibility of increasing the transition Reynolds number by means of SF6 injection. Controlled disturbances are introduced in the model boundary layer by means of a point harmonic glow-discharge disturbance generator and are measured by using a hot-wire anemometer. For the first time, it is shown experimentally that distributed injection of the heavy SF6 gas leads to boundary layer stabilization. This is mostly due to the reduction in growth rates of disturbances at higher frequencies, while the LTT shifted to higher Reynolds number values. Good qualitative agreement is achieved between the experimental data obtained with artificially generated disturbances and computations based on linear stability theory.

AB - This study performed a joint theoretical and experimental investigation of the influence of distributed normal-to-the-surface and inclined heavy-gas injection into the near-wall sublayer of a boundary layer through a permeable wall on the laminar-turbulent transition (LTT). Sulfur hexafluoride (SF6) is used as a foreign gas for injection into the boundary layer. It also assessed stability in relation to both natural and artificial (controlled) disturbances of a supersonic flat-plate boundary layer at a free-stream Mach number (M) of 2. It is established, theoretically, that the action of a large molecular weight gas injection on the boundary layer is similar to the action of wall cooling and leads to an increase in boundary layer stability and LTT delay. The influence of injection on the position of transition is estimated by means of the eN method. Principally, the analysis shows the possibility of increasing the transition Reynolds number by means of SF6 injection. Controlled disturbances are introduced in the model boundary layer by means of a point harmonic glow-discharge disturbance generator and are measured by using a hot-wire anemometer. For the first time, it is shown experimentally that distributed injection of the heavy SF6 gas leads to boundary layer stabilization. This is mostly due to the reduction in growth rates of disturbances at higher frequencies, while the LTT shifted to higher Reynolds number values. Good qualitative agreement is achieved between the experimental data obtained with artificially generated disturbances and computations based on linear stability theory.

KW - LAMINAR

UR - http://www.scopus.com/inward/record.url?scp=85073104711&partnerID=8YFLogxK

U2 - 10.1063/1.5112145

DO - 10.1063/1.5112145

M3 - Article

AN - SCOPUS:85073104711

VL - 31

JO - Physics of Fluids

JF - Physics of Fluids

SN - 1070-6631

IS - 10

M1 - 104103

ER -

ID: 25837397