Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Hopficity of Vertex-Transitive Generalized Baumslag–Solitar Groups. / Guskov, N. V.; Dudkin, F. A.
в: Siberian Mathematical Journal, Том 66, № 4, 23.07.2025, стр. 946-951.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Hopficity of Vertex-Transitive Generalized Baumslag–Solitar Groups
AU - Guskov, N. V.
AU - Dudkin, F. A.
N1 - The work of Dudkin was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0002) (Theorem 1). Guskov, N. V. Hopficity of Vertex-Transitive Generalized Baumslag–Solitar Groups / N. V. Guskov, F. A. Dudkin // Siberian Mathematical Journal. – 2025. – Vol. 66, No. 4. – P. 946-951. – DOI 10.1134/S003744662504007X.
PY - 2025/7/23
Y1 - 2025/7/23
N2 - A generalized Baumslag–Solitar group (GBS group) is a finitely generated group acting on a tree in such a way that all vertex and edge stabilizers are infinite cyclic groups.If acts transitively on the set of vertices, we refer to it as a vertex-transitive GBS group (VTGBS group).A group is said to be Hopfian if every epimorphism from the group onto itself is an isomorphism.In this paper, we obtain several sufficient conditions for VTGBS groups to be non-Hopfian and describe epimorphisms of such groups.
AB - A generalized Baumslag–Solitar group (GBS group) is a finitely generated group acting on a tree in such a way that all vertex and edge stabilizers are infinite cyclic groups.If acts transitively on the set of vertices, we refer to it as a vertex-transitive GBS group (VTGBS group).A group is said to be Hopfian if every epimorphism from the group onto itself is an isomorphism.In this paper, we obtain several sufficient conditions for VTGBS groups to be non-Hopfian and describe epimorphisms of such groups.
KW - 512.54
KW - Hopfian group
KW - generalized Baumslag–Solitar group
KW - vertex-transitive action
UR - https://www.mendeley.com/catalogue/a8e00f33-68f8-3406-956a-92304063d496/
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105011278921&origin=inward
UR - https://www.elibrary.ru/item.asp?id=82650978
U2 - 10.1134/S003744662504007X
DO - 10.1134/S003744662504007X
M3 - Article
VL - 66
SP - 946
EP - 951
JO - Siberian Mathematical Journal
JF - Siberian Mathematical Journal
SN - 0037-4466
IS - 4
ER -
ID: 68585631