Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Global higher regularity of solutions to singular p(x,t)-parabolic equations. / Antontsev, Stanislav; Kuznetsov, Ivan; Shmarev, Sergey.
в: Journal of Mathematical Analysis and Applications, Том 466, № 1, 01.10.2018, стр. 238-263.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Global higher regularity of solutions to singular p(x,t)-parabolic equations
AU - Antontsev, Stanislav
AU - Kuznetsov, Ivan
AU - Shmarev, Sergey
N1 - Publisher Copyright: © 2018 Elsevier Inc.
PY - 2018/10/1
Y1 - 2018/10/1
N2 - We study the homogeneous Dirichlet problem for the equation ut=div(|∇u|p(x,t)−2∇u)+f(x,t,u) in the cylinder QT=Ω×(0,T), Ω⊂Rd, d≥2. It is assumed that p(x,t)∈([Formula presented],2) and |∇p|, |pt| are bounded a.e. in QT. We find conditions on p(x,t), f(x,t,u) and u(x,0) sufficient for the existence of strong solutions, local or global in time. It is proven that the strong solutions possess the property of global higher regularity: ut∈L2(QT), |∇u|∈L∞(0,T;L2(Ω)), |Dij 2u|p(x,t)∈L1(QT).
AB - We study the homogeneous Dirichlet problem for the equation ut=div(|∇u|p(x,t)−2∇u)+f(x,t,u) in the cylinder QT=Ω×(0,T), Ω⊂Rd, d≥2. It is assumed that p(x,t)∈([Formula presented],2) and |∇p|, |pt| are bounded a.e. in QT. We find conditions on p(x,t), f(x,t,u) and u(x,0) sufficient for the existence of strong solutions, local or global in time. It is proven that the strong solutions possess the property of global higher regularity: ut∈L2(QT), |∇u|∈L∞(0,T;L2(Ω)), |Dij 2u|p(x,t)∈L1(QT).
KW - Higher regularity
KW - Singular parabolic equation
KW - Strong solutions
KW - Variable nonlinearity
KW - P-LAPLACIAN
KW - CONTINUITY
KW - PARABOLIC EQUATIONS
UR - http://www.scopus.com/inward/record.url?scp=85048151186&partnerID=8YFLogxK
U2 - 10.1016/j.jmaa.2018.05.075
DO - 10.1016/j.jmaa.2018.05.075
M3 - Article
AN - SCOPUS:85048151186
VL - 466
SP - 238
EP - 263
JO - Journal of Mathematical Analysis and Applications
JF - Journal of Mathematical Analysis and Applications
SN - 0022-247X
IS - 1
ER -
ID: 13794311