Standard

Generalized Rigid Metabelian Groups. / Romanovskii, N. S.

в: Siberian Mathematical Journal, Том 60, № 1, 01.01.2019, стр. 148-152.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Romanovskii, NS 2019, 'Generalized Rigid Metabelian Groups', Siberian Mathematical Journal, Том. 60, № 1, стр. 148-152. https://doi.org/10.1134/S0037446619010166

APA

Vancouver

Romanovskii NS. Generalized Rigid Metabelian Groups. Siberian Mathematical Journal. 2019 янв. 1;60(1):148-152. doi: 10.1134/S0037446619010166

Author

Romanovskii, N. S. / Generalized Rigid Metabelian Groups. в: Siberian Mathematical Journal. 2019 ; Том 60, № 1. стр. 148-152.

BibTeX

@article{db7d1f712f49445fb92d45bb21a46784,
title = "Generalized Rigid Metabelian Groups",
abstract = "We study the generalized rigid groups (r-groups), in the metabelian case in more detail. The periodic r-groups are described. We prove that each divisible metabelian r-group decomposes as a semidirect product of two abelian subgroups, each metabelian r-group independently embeds into a divisible metabelian r-group, and the intersection of each collection of divisible subgroups of a metabelian r-group is divisible too.",
keywords = "divisible group, metabelian group, soluble group",
author = "Romanovskii, {N. S.}",
year = "2019",
month = jan,
day = "1",
doi = "10.1134/S0037446619010166",
language = "English",
volume = "60",
pages = "148--152",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "1",

}

RIS

TY - JOUR

T1 - Generalized Rigid Metabelian Groups

AU - Romanovskii, N. S.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - We study the generalized rigid groups (r-groups), in the metabelian case in more detail. The periodic r-groups are described. We prove that each divisible metabelian r-group decomposes as a semidirect product of two abelian subgroups, each metabelian r-group independently embeds into a divisible metabelian r-group, and the intersection of each collection of divisible subgroups of a metabelian r-group is divisible too.

AB - We study the generalized rigid groups (r-groups), in the metabelian case in more detail. The periodic r-groups are described. We prove that each divisible metabelian r-group decomposes as a semidirect product of two abelian subgroups, each metabelian r-group independently embeds into a divisible metabelian r-group, and the intersection of each collection of divisible subgroups of a metabelian r-group is divisible too.

KW - divisible group

KW - metabelian group

KW - soluble group

UR - http://www.scopus.com/inward/record.url?scp=85065226122&partnerID=8YFLogxK

U2 - 10.1134/S0037446619010166

DO - 10.1134/S0037446619010166

M3 - Article

AN - SCOPUS:85065226122

VL - 60

SP - 148

EP - 152

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 1

ER -

ID: 20051857