Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Generalization and refinement of the integro-local stone theorem for sums of random vectors. / Borovkov, A. A.
в: Theory of Probability and its Applications, Том 61, № 4, 01.01.2017, стр. 590-612.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Generalization and refinement of the integro-local stone theorem for sums of random vectors
AU - Borovkov, A. A.
PY - 2017/1/1
Y1 - 2017/1/1
N2 - The integro-local Stone theorem on the asymptotics of the probability that a sum of random vectors enters a small cube is (a) refined under additional moment and structural conditions; (b) generalized to a case of nonidentically distributed summands in the triangular array scheme; (c) the results of item (b) are refined under additional moment and structural conditions.
AB - The integro-local Stone theorem on the asymptotics of the probability that a sum of random vectors enters a small cube is (a) refined under additional moment and structural conditions; (b) generalized to a case of nonidentically distributed summands in the triangular array scheme; (c) the results of item (b) are refined under additional moment and structural conditions.
KW - Bound for the remainder term
KW - Integro-local stone theorem
KW - Sums of random vectors
KW - Triangular array scheme
UR - http://www.scopus.com/inward/record.url?scp=85007595883&partnerID=8YFLogxK
U2 - 10.1137/S0040585X97T988368
DO - 10.1137/S0040585X97T988368
M3 - Article
AN - SCOPUS:85007595883
VL - 61
SP - 590
EP - 612
JO - Theory of Probability and its Applications
JF - Theory of Probability and its Applications
SN - 0040-585X
IS - 4
ER -
ID: 10523293