Standard

Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails. / Chebunin, Mikhail Georgievich.

в: Сибирские электронные математические известия, Том 14, 2017, стр. 1289-1298.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Chebunin, MG 2017, 'Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails', Сибирские электронные математические известия, Том. 14, стр. 1289-1298. https://doi.org/10.17377/semi.2017.14.109

APA

Chebunin, M. G. (2017). Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails. Сибирские электронные математические известия, 14, 1289-1298. https://doi.org/10.17377/semi.2017.14.109

Vancouver

Chebunin MG. Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails. Сибирские электронные математические известия. 2017;14:1289-1298. doi: 10.17377/semi.2017.14.109

Author

Chebunin, Mikhail Georgievich. / Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails. в: Сибирские электронные математические известия. 2017 ; Том 14. стр. 1289-1298.

BibTeX

@article{8efde19fcf55487db5ff461f5efd4da3,
title = "Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails",
abstract = "We study a vector process of a number of urns with fixed quantities of balls in an infinite urn scheme.We assume that probabilities of entering an urn change regularly with exponent minus one. We prove a multidimensional functional central limit theorem for this process.",
keywords = "Functional central limit theorem, Infinite urn scheme, Relative compactness, Slow variation",
author = "Chebunin, {Mikhail Georgievich}",
year = "2017",
doi = "10.17377/semi.2017.14.109",
language = "English",
volume = "14",
pages = "1289--1298",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails

AU - Chebunin, Mikhail Georgievich

PY - 2017

Y1 - 2017

N2 - We study a vector process of a number of urns with fixed quantities of balls in an infinite urn scheme.We assume that probabilities of entering an urn change regularly with exponent minus one. We prove a multidimensional functional central limit theorem for this process.

AB - We study a vector process of a number of urns with fixed quantities of balls in an infinite urn scheme.We assume that probabilities of entering an urn change regularly with exponent minus one. We prove a multidimensional functional central limit theorem for this process.

KW - Functional central limit theorem

KW - Infinite urn scheme

KW - Relative compactness

KW - Slow variation

UR - http://www.scopus.com/inward/record.url?scp=85038421847&partnerID=8YFLogxK

U2 - 10.17377/semi.2017.14.109

DO - 10.17377/semi.2017.14.109

M3 - Article

AN - SCOPUS:85038421847

VL - 14

SP - 1289

EP - 1298

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 9069042