Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Free special Gelfand-Dorfman algebra. / Gubarev, V.; Sartayev, B. K.
в: Journal of Algebra and its Applications, 2023.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Free special Gelfand-Dorfman algebra
AU - Gubarev, V.
AU - Sartayev, B. K.
PY - 2023
Y1 - 2023
N2 - A Gelfand-Dorfman algebra is called special if it can be embedded into a differential Poisson algebra. We find a new basis of the free Novikov algebra. With its help, we construct the monomial basis of the free special Gelfand-Dorfman algebra.
AB - A Gelfand-Dorfman algebra is called special if it can be embedded into a differential Poisson algebra. We find a new basis of the free Novikov algebra. With its help, we construct the monomial basis of the free special Gelfand-Dorfman algebra.
KW - Differential algebra
KW - Gelfand-Dorfman algebra
KW - Poisson algebra
KW - identity
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85168985401&origin=inward&txGid=463e90c0620cc6f9bdadf98bd79300fd
UR - https://www.mendeley.com/catalogue/e66dab5f-817a-3543-8827-45ed705ea64e/
U2 - 10.1142/S0219498825500057
DO - 10.1142/S0219498825500057
M3 - Article
JO - Journal of Algebra and its Applications
JF - Journal of Algebra and its Applications
SN - 0219-4988
M1 - 2550005
ER -
ID: 59173145