Standard

Free special Gelfand-Dorfman algebra. / Gubarev, V.; Sartayev, B. K.

в: Journal of Algebra and its Applications, 2023.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Gubarev, V & Sartayev, BK 2023, 'Free special Gelfand-Dorfman algebra', Journal of Algebra and its Applications. https://doi.org/10.1142/S0219498825500057

APA

Gubarev, V., & Sartayev, B. K. (2023). Free special Gelfand-Dorfman algebra. Journal of Algebra and its Applications, [2550005]. https://doi.org/10.1142/S0219498825500057

Vancouver

Gubarev V, Sartayev BK. Free special Gelfand-Dorfman algebra. Journal of Algebra and its Applications. 2023;2550005. doi: 10.1142/S0219498825500057

Author

Gubarev, V. ; Sartayev, B. K. / Free special Gelfand-Dorfman algebra. в: Journal of Algebra and its Applications. 2023.

BibTeX

@article{e5feb7d107754b988f02786bfa1a8a76,
title = "Free special Gelfand-Dorfman algebra",
abstract = "A Gelfand-Dorfman algebra is called special if it can be embedded into a differential Poisson algebra. We find a new basis of the free Novikov algebra. With its help, we construct the monomial basis of the free special Gelfand-Dorfman algebra.",
keywords = "Differential algebra, Gelfand-Dorfman algebra, Poisson algebra, identity",
author = "V. Gubarev and Sartayev, {B. K.}",
year = "2023",
doi = "10.1142/S0219498825500057",
language = "English",
journal = "Journal of Algebra and its Applications",
issn = "0219-4988",
publisher = "World Scientific Publishing Co. Pte Ltd",

}

RIS

TY - JOUR

T1 - Free special Gelfand-Dorfman algebra

AU - Gubarev, V.

AU - Sartayev, B. K.

PY - 2023

Y1 - 2023

N2 - A Gelfand-Dorfman algebra is called special if it can be embedded into a differential Poisson algebra. We find a new basis of the free Novikov algebra. With its help, we construct the monomial basis of the free special Gelfand-Dorfman algebra.

AB - A Gelfand-Dorfman algebra is called special if it can be embedded into a differential Poisson algebra. We find a new basis of the free Novikov algebra. With its help, we construct the monomial basis of the free special Gelfand-Dorfman algebra.

KW - Differential algebra

KW - Gelfand-Dorfman algebra

KW - Poisson algebra

KW - identity

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85168985401&origin=inward&txGid=463e90c0620cc6f9bdadf98bd79300fd

UR - https://www.mendeley.com/catalogue/e66dab5f-817a-3543-8827-45ed705ea64e/

U2 - 10.1142/S0219498825500057

DO - 10.1142/S0219498825500057

M3 - Article

JO - Journal of Algebra and its Applications

JF - Journal of Algebra and its Applications

SN - 0219-4988

M1 - 2550005

ER -

ID: 59173145