Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Every latin hypercube of order 5 has transversals. / Perezhogin, Alexey L.; Potapov, Vladimir N.; Vladimirov, Sergey Yu.
в: Journal of Combinatorial Designs, 11.2024, стр. 679-699.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Every latin hypercube of order 5 has transversals
AU - Perezhogin, Alexey L.
AU - Potapov, Vladimir N.
AU - Vladimirov, Sergey Yu
N1 - The research has been carried out within the framework of a state assignment of the Ministry of Education and Science of the Russian Federation for the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences (project no. FWNF-2022-0017).
PY - 2024/11
Y1 - 2024/11
N2 - We prove that for all (Formula presented.) every latin (Formula presented.) -dimensional cube of order 5 has transversals. We find all 123 paratopy classes of layer-latin cubes of order 5 with no transversals. For each (Formula presented.) and (Formula presented.) we construct a (Formula presented.) latin (Formula presented.) -dimensional cuboid of order (Formula presented.) with no transversals. Moreover, we find all paratopy classes of nonextendible and noncompletable latin cuboids of order 5.
AB - We prove that for all (Formula presented.) every latin (Formula presented.) -dimensional cube of order 5 has transversals. We find all 123 paratopy classes of layer-latin cubes of order 5 with no transversals. For each (Formula presented.) and (Formula presented.) we construct a (Formula presented.) latin (Formula presented.) -dimensional cuboid of order (Formula presented.) with no transversals. Moreover, we find all paratopy classes of nonextendible and noncompletable latin cuboids of order 5.
KW - latin hypercube
KW - latin square
KW - nonextendible latin cuboid
KW - permanent of multidimensional matrix
KW - transversal
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85200028211&origin=inward&txGid=489c7d41e07f3a47c1c3bfffdd7dfa14
UR - https://www.mendeley.com/catalogue/fc70c553-f15b-34e8-8f5e-214580bb0954/
U2 - 10.1002/jcd.21954
DO - 10.1002/jcd.21954
M3 - Article
SP - 679
EP - 699
JO - Journal of Combinatorial Designs
JF - Journal of Combinatorial Designs
SN - 1063-8539
ER -
ID: 61114292