Standard

Estimates for solutions of one class of systems of equations of neutral type with distributed delay. / Yskak, T.

в: Сибирские электронные математические известия, Том 17, 027, 01.03.2020, стр. 416-427.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Yskak, T 2020, 'Estimates for solutions of one class of systems of equations of neutral type with distributed delay', Сибирские электронные математические известия, Том. 17, 027, стр. 416-427. https://doi.org/10.33048/SEMI.2020.17.027

APA

Yskak, T. (2020). Estimates for solutions of one class of systems of equations of neutral type with distributed delay. Сибирские электронные математические известия, 17, 416-427. [027]. https://doi.org/10.33048/SEMI.2020.17.027

Vancouver

Yskak T. Estimates for solutions of one class of systems of equations of neutral type with distributed delay. Сибирские электронные математические известия. 2020 март 1;17:416-427. 027. doi: 10.33048/SEMI.2020.17.027

Author

Yskak, T. / Estimates for solutions of one class of systems of equations of neutral type with distributed delay. в: Сибирские электронные математические известия. 2020 ; Том 17. стр. 416-427.

BibTeX

@article{e7b98034cb1645b29b93f4ec1c2b2447,
title = "Estimates for solutions of one class of systems of equations of neutral type with distributed delay",
abstract = "In the paper we consider a system of linear differential equations of neutral type with periodic coefficients and with distributed delay. Sufficient conditions for the exponential stability of the zero solution of this system are given, estimates for solutions that characterize the exponential decrease at infinity are indicated. In the study of exponential stability, the modified Lyapunov-Krasovskii functional is used. Also for system of delay difference equations, a criterion for the exponential stability of the zero solution in terms of the solvability of the matrix equation with a delayed argument is proved.",
keywords = "Distributed delay, Exponential stability, Lyapunov-Krasovskii functional, Neutral type equation, Periodic coefficient",
author = "T. Yskak",
year = "2020",
month = mar,
day = "1",
doi = "10.33048/SEMI.2020.17.027",
language = "English",
volume = "17",
pages = "416--427",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Estimates for solutions of one class of systems of equations of neutral type with distributed delay

AU - Yskak, T.

PY - 2020/3/1

Y1 - 2020/3/1

N2 - In the paper we consider a system of linear differential equations of neutral type with periodic coefficients and with distributed delay. Sufficient conditions for the exponential stability of the zero solution of this system are given, estimates for solutions that characterize the exponential decrease at infinity are indicated. In the study of exponential stability, the modified Lyapunov-Krasovskii functional is used. Also for system of delay difference equations, a criterion for the exponential stability of the zero solution in terms of the solvability of the matrix equation with a delayed argument is proved.

AB - In the paper we consider a system of linear differential equations of neutral type with periodic coefficients and with distributed delay. Sufficient conditions for the exponential stability of the zero solution of this system are given, estimates for solutions that characterize the exponential decrease at infinity are indicated. In the study of exponential stability, the modified Lyapunov-Krasovskii functional is used. Also for system of delay difference equations, a criterion for the exponential stability of the zero solution in terms of the solvability of the matrix equation with a delayed argument is proved.

KW - Distributed delay

KW - Exponential stability

KW - Lyapunov-Krasovskii functional

KW - Neutral type equation

KW - Periodic coefficient

UR - http://www.scopus.com/inward/record.url?scp=85086912133&partnerID=8YFLogxK

U2 - 10.33048/SEMI.2020.17.027

DO - 10.33048/SEMI.2020.17.027

M3 - Article

AN - SCOPUS:85086912133

VL - 17

SP - 416

EP - 427

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

M1 - 027

ER -

ID: 24617808