Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Estimates for Solutions of a Biological Model with Infinite Distributed Delay. / Iskakov, T. K.; Skvortsova, M. A.
в: Computational Mathematics and Mathematical Physics, Том 64, № 8, 26.09.2024, стр. 1689-1703.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Estimates for Solutions of a Biological Model with Infinite Distributed Delay
AU - Iskakov, T. K.
AU - Skvortsova, M. A.
PY - 2024/9/26
Y1 - 2024/9/26
N2 - For several species of microorganisms, a competition model described by a system of nonlinear differential equations with an infinite distributed delay is considered. The asymptotic stability of the equilibrium point corresponding to the survival of only one species and extinction of the others is studied. Conditions on the initial species population sizes and the initial nutrient concentration are indicated under which the system reaches the equilibrium. Additionally, the stabilization rate is estimated. The results are obtained using a Lyapunov–Krasovskii functional.
AB - For several species of microorganisms, a competition model described by a system of nonlinear differential equations with an infinite distributed delay is considered. The asymptotic stability of the equilibrium point corresponding to the survival of only one species and extinction of the others is studied. Conditions on the initial species population sizes and the initial nutrient concentration are indicated under which the system reaches the equilibrium. Additionally, the stabilization rate is estimated. The results are obtained using a Lyapunov–Krasovskii functional.
KW - Lyapunov–Krasovskii functional
KW - asymptotic stability
KW - chemostat
KW - delay differential equations
KW - domain of attraction
KW - equilibrium point
KW - estimates for solutions
KW - infinite distributed delay
KW - species competition model
UR - https://www.mendeley.com/catalogue/0ebf9060-7d3d-3a78-acf9-a1499fd05d00/
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85205388707&origin=inward&txGid=c905ca6820122d7cb2d3ec197d8273b6
U2 - 10.1134/S0965542524700921
DO - 10.1134/S0965542524700921
M3 - Article
VL - 64
SP - 1689
EP - 1703
JO - Computational Mathematics and Mathematical Physics
JF - Computational Mathematics and Mathematical Physics
SN - 0965-5425
IS - 8
ER -
ID: 60817636