Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Estimates for solutions in a model of reptile population dynamics. / Скворцова, Мария Александровна.
в: Mathematical Notes of NEFU, Том 30, № 4, 2023, стр. 49-65.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Estimates for solutions in a model of reptile population dynamics
AU - Скворцова, Мария Александровна
N1 - Работа выполнена в рамках государственного задания Института математики им. С.Л. Соболева СО РАН (проект No FWNF-2022-0008). Публикация для корректировки.
PY - 2023
Y1 - 2023
N2 - We consider a model of reptile population dynamics in which the gender of the future individuals depends on the environment temperature. The model is described by a system of delay differential equations in which the delay parameter is responsible for the time spent by individuals in immature age. We study the case of complete extinction of the entire population and the case of stabilization of the population size at a constant value. In each case Lyapunov–Krasovskii functionals are constructed, with the help of which we establish estimates characterizing the rate of extinction of the population in the first case and the rate of stabilization of the population size in the second. Using the obtained estimates, it is possible to evaluate the time for which the population size will reach the equilibrium state.
AB - We consider a model of reptile population dynamics in which the gender of the future individuals depends on the environment temperature. The model is described by a system of delay differential equations in which the delay parameter is responsible for the time spent by individuals in immature age. We study the case of complete extinction of the entire population and the case of stabilization of the population size at a constant value. In each case Lyapunov–Krasovskii functionals are constructed, with the help of which we establish estimates characterizing the rate of extinction of the population in the first case and the rate of stabilization of the population size in the second. Using the obtained estimates, it is possible to evaluate the time for which the population size will reach the equilibrium state.
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85184239415&origin=inward&txGid=c540ea18ce7477128e82d3e8ea3839fa
U2 - 10.25587/2411-9326-2023-4-49-65
DO - 10.25587/2411-9326-2023-4-49-65
M3 - Article
VL - 30
SP - 49
EP - 65
JO - Математические заметки СВФУ
JF - Математические заметки СВФУ
SN - 2411-9326
IS - 4
ER -
ID: 59664236