Standard

Estimates for solutions in a model of reptile population dynamics. / Скворцова, Мария Александровна.

в: Mathematical Notes of NEFU, Том 30, № 4, 2023, стр. 49-65.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Скворцова МА. Estimates for solutions in a model of reptile population dynamics. Mathematical Notes of NEFU. 2023;30(4):49-65. doi: 10.25587/2411-9326-2023-4-49-65

Author

BibTeX

@article{aad00a24a6fd4e8090f9aaf329fd4e30,
title = "Estimates for solutions in a model of reptile population dynamics",
abstract = "We consider a model of reptile population dynamics in which the gender of the future individuals depends on the environment temperature. The model is described by a system of delay differential equations in which the delay parameter is responsible for the time spent by individuals in immature age. We study the case of complete extinction of the entire population and the case of stabilization of the population size at a constant value. In each case Lyapunov–Krasovskii functionals are constructed, with the help of which we establish estimates characterizing the rate of extinction of the population in the first case and the rate of stabilization of the population size in the second. Using the obtained estimates, it is possible to evaluate the time for which the population size will reach the equilibrium state.",
author = "Скворцова, {Мария Александровна}",
note = "Работа выполнена в рамках государственного задания Института математики им. С.Л. Соболева СО РАН (проект No FWNF-2022-0008). Публикация для корректировки.",
year = "2023",
doi = "10.25587/2411-9326-2023-4-49-65",
language = "English",
volume = "30",
pages = "49--65",
journal = "Математические заметки СВФУ",
issn = "2411-9326",
publisher = "M. K. Ammosov North-Eastern Federal University",
number = "4",

}

RIS

TY - JOUR

T1 - Estimates for solutions in a model of reptile population dynamics

AU - Скворцова, Мария Александровна

N1 - Работа выполнена в рамках государственного задания Института математики им. С.Л. Соболева СО РАН (проект No FWNF-2022-0008). Публикация для корректировки.

PY - 2023

Y1 - 2023

N2 - We consider a model of reptile population dynamics in which the gender of the future individuals depends on the environment temperature. The model is described by a system of delay differential equations in which the delay parameter is responsible for the time spent by individuals in immature age. We study the case of complete extinction of the entire population and the case of stabilization of the population size at a constant value. In each case Lyapunov–Krasovskii functionals are constructed, with the help of which we establish estimates characterizing the rate of extinction of the population in the first case and the rate of stabilization of the population size in the second. Using the obtained estimates, it is possible to evaluate the time for which the population size will reach the equilibrium state.

AB - We consider a model of reptile population dynamics in which the gender of the future individuals depends on the environment temperature. The model is described by a system of delay differential equations in which the delay parameter is responsible for the time spent by individuals in immature age. We study the case of complete extinction of the entire population and the case of stabilization of the population size at a constant value. In each case Lyapunov–Krasovskii functionals are constructed, with the help of which we establish estimates characterizing the rate of extinction of the population in the first case and the rate of stabilization of the population size in the second. Using the obtained estimates, it is possible to evaluate the time for which the population size will reach the equilibrium state.

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85184239415&origin=inward&txGid=c540ea18ce7477128e82d3e8ea3839fa

U2 - 10.25587/2411-9326-2023-4-49-65

DO - 10.25587/2411-9326-2023-4-49-65

M3 - Article

VL - 30

SP - 49

EP - 65

JO - Математические заметки СВФУ

JF - Математические заметки СВФУ

SN - 2411-9326

IS - 4

ER -

ID: 59664236