Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Enhanced Yb:YAG Active Mirrors for High Power Laser Amplifiers. / Petrov, Vladimir A.; Kuptsov, Gleb V.; Kuptsova, Alyona O. и др.
в: Photonics, Том 10, № 7, 849, 07.2023.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Enhanced Yb:YAG Active Mirrors for High Power Laser Amplifiers
AU - Petrov, Vladimir A.
AU - Kuptsov, Gleb V.
AU - Kuptsova, Alyona O.
AU - Atuchin, Victor V.
AU - Stroganova, Elena V.
AU - Petrov, Victor V.
N1 - The reported study was funded by the Russian Science Foundation grant No. 23-22-00238. Публикация для корректировки.
PY - 2023/7
Y1 - 2023/7
N2 - The work is aimed at the investigation of the influence of nonlinear active ions concentration profiles in Yb:YAG laser elements on temperature distribution and wavefront distortions during amplification using sub-kilowatt level diode pumping. A mathematical model is presented for the theoretical study of the amplification process in crystals with cubic crystal system. A detailed comparison of Yb:YAG active elements with the same thickness and absorbed pumping power, but with various concentration profiles of Yb3+, ions is carried out. It is shown that the use of active elements with an increasing dopant concentration in the pump beam direction allows one to optimize the temperature profile inside the active element and, thus, reduce the thermal-induced wavefront distortions of the amplified radiation. Modeling is carried out for the experimentally grown crystal with linear concentration gradient profile. It is shown that the linear doping profile with a gradient of 0.65 at.%/mm allows increasing the small-signal gain up to 10% and decreasing the thermal-induced wavefront distortions by ~15%.
AB - The work is aimed at the investigation of the influence of nonlinear active ions concentration profiles in Yb:YAG laser elements on temperature distribution and wavefront distortions during amplification using sub-kilowatt level diode pumping. A mathematical model is presented for the theoretical study of the amplification process in crystals with cubic crystal system. A detailed comparison of Yb:YAG active elements with the same thickness and absorbed pumping power, but with various concentration profiles of Yb3+, ions is carried out. It is shown that the use of active elements with an increasing dopant concentration in the pump beam direction allows one to optimize the temperature profile inside the active element and, thus, reduce the thermal-induced wavefront distortions of the amplified radiation. Modeling is carried out for the experimentally grown crystal with linear concentration gradient profile. It is shown that the linear doping profile with a gradient of 0.65 at.%/mm allows increasing the small-signal gain up to 10% and decreasing the thermal-induced wavefront distortions by ~15%.
KW - active mirrors
KW - diode pumping
KW - doping distribution
KW - gradient doping
KW - laser amplifiers
KW - laser materials
KW - thermal effects
KW - wavefront distortions
KW - ytterbium ions
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85166306203&origin=inward&txGid=bf78ec191b1a34e974e8f880feb676af
UR - https://www.mendeley.com/catalogue/8a19828e-8165-3328-b5af-6f47f44bf4aa/
U2 - 10.3390/photonics10070849
DO - 10.3390/photonics10070849
M3 - Article
VL - 10
JO - Photonics
JF - Photonics
SN - 2304-6732
IS - 7
M1 - 849
ER -
ID: 59259168