Standard

Enhanced surface state protection and band gap in the topological insulator PbBi4 Te4 S3. / Sumida, K.; Natsumeda, T.; Miyamoto, K. и др.

в: Physical Review Materials, Том 2, № 10, 104201, 01.10.2018.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Sumida, K, Natsumeda, T, Miyamoto, K, Silkin, IV, Kuroda, K, Shirai, K, Zhu, S, Taguchi, K, Arita, M, Fujii, J, Varykhalov, A, Rader, O, Golyashov, VA, Kokh, KA, Tereshchenko, OE, Chulkov, EV, Okuda, T & Kimura, A 2018, 'Enhanced surface state protection and band gap in the topological insulator PbBi4 Te4 S3', Physical Review Materials, Том. 2, № 10, 104201. https://doi.org/10.1103/PhysRevMaterials.2.104201

APA

Sumida, K., Natsumeda, T., Miyamoto, K., Silkin, I. V., Kuroda, K., Shirai, K., Zhu, S., Taguchi, K., Arita, M., Fujii, J., Varykhalov, A., Rader, O., Golyashov, V. A., Kokh, K. A., Tereshchenko, O. E., Chulkov, E. V., Okuda, T., & Kimura, A. (2018). Enhanced surface state protection and band gap in the topological insulator PbBi4 Te4 S3. Physical Review Materials, 2(10), [104201]. https://doi.org/10.1103/PhysRevMaterials.2.104201

Vancouver

Sumida K, Natsumeda T, Miyamoto K, Silkin IV, Kuroda K, Shirai K и др. Enhanced surface state protection and band gap in the topological insulator PbBi4 Te4 S3. Physical Review Materials. 2018 окт. 1;2(10):104201. doi: 10.1103/PhysRevMaterials.2.104201

Author

Sumida, K. ; Natsumeda, T. ; Miyamoto, K. и др. / Enhanced surface state protection and band gap in the topological insulator PbBi4 Te4 S3. в: Physical Review Materials. 2018 ; Том 2, № 10.

BibTeX

@article{ecde2069971e41508db49bff299d9ce5,
title = "Enhanced surface state protection and band gap in the topological insulator PbBi4 Te4 S3",
abstract = "Topological insulators (TIs) with an inverted bulk band and a strong spin-orbit coupling exhibit gapless topological surface states (TSSs) protected by time-reversal symmetry. Helical spin textures driven by spin-momentum locking offer the opportunity to generate spin-polarized currents and therefore TIs are expected to be used for future spintronic applications. For practical applications TIs are urgently required that are operable at room temperature due to a wide bulk band gap as well as a distinct topological surface state that is robust to atmospheric exposure. Here we show two distinguishable TSSs originating from different terminations on PbBi4Te4S3 by using spin- and angle-resolved photoemission spectroscopy. We find that one TSS is persistently observed, while the other becomes invisible upon intentional oxygen exposure. The result signifies the presence of a protected TSS buried under the topmost surface. Our finding paves the way for realizing a topological spintronics device under atmospheric conditions.",
keywords = "METALS",
author = "K. Sumida and T. Natsumeda and K. Miyamoto and Silkin, {I. V.} and K. Kuroda and K. Shirai and S. Zhu and K. Taguchi and M. Arita and J. Fujii and A. Varykhalov and O. Rader and Golyashov, {V. A.} and Kokh, {K. A.} and Tereshchenko, {O. E.} and Chulkov, {E. V.} and T. Okuda and A. Kimura",
note = "Publisher Copyright: {\textcopyright} 2018 American Physical Society.",
year = "2018",
month = oct,
day = "1",
doi = "10.1103/PhysRevMaterials.2.104201",
language = "English",
volume = "2",
journal = "Physical Review Materials",
issn = "2475-9953",
publisher = "American Physical Society",
number = "10",

}

RIS

TY - JOUR

T1 - Enhanced surface state protection and band gap in the topological insulator PbBi4 Te4 S3

AU - Sumida, K.

AU - Natsumeda, T.

AU - Miyamoto, K.

AU - Silkin, I. V.

AU - Kuroda, K.

AU - Shirai, K.

AU - Zhu, S.

AU - Taguchi, K.

AU - Arita, M.

AU - Fujii, J.

AU - Varykhalov, A.

AU - Rader, O.

AU - Golyashov, V. A.

AU - Kokh, K. A.

AU - Tereshchenko, O. E.

AU - Chulkov, E. V.

AU - Okuda, T.

AU - Kimura, A.

N1 - Publisher Copyright: © 2018 American Physical Society.

PY - 2018/10/1

Y1 - 2018/10/1

N2 - Topological insulators (TIs) with an inverted bulk band and a strong spin-orbit coupling exhibit gapless topological surface states (TSSs) protected by time-reversal symmetry. Helical spin textures driven by spin-momentum locking offer the opportunity to generate spin-polarized currents and therefore TIs are expected to be used for future spintronic applications. For practical applications TIs are urgently required that are operable at room temperature due to a wide bulk band gap as well as a distinct topological surface state that is robust to atmospheric exposure. Here we show two distinguishable TSSs originating from different terminations on PbBi4Te4S3 by using spin- and angle-resolved photoemission spectroscopy. We find that one TSS is persistently observed, while the other becomes invisible upon intentional oxygen exposure. The result signifies the presence of a protected TSS buried under the topmost surface. Our finding paves the way for realizing a topological spintronics device under atmospheric conditions.

AB - Topological insulators (TIs) with an inverted bulk band and a strong spin-orbit coupling exhibit gapless topological surface states (TSSs) protected by time-reversal symmetry. Helical spin textures driven by spin-momentum locking offer the opportunity to generate spin-polarized currents and therefore TIs are expected to be used for future spintronic applications. For practical applications TIs are urgently required that are operable at room temperature due to a wide bulk band gap as well as a distinct topological surface state that is robust to atmospheric exposure. Here we show two distinguishable TSSs originating from different terminations on PbBi4Te4S3 by using spin- and angle-resolved photoemission spectroscopy. We find that one TSS is persistently observed, while the other becomes invisible upon intentional oxygen exposure. The result signifies the presence of a protected TSS buried under the topmost surface. Our finding paves the way for realizing a topological spintronics device under atmospheric conditions.

KW - METALS

UR - http://www.scopus.com/inward/record.url?scp=85059837446&partnerID=8YFLogxK

U2 - 10.1103/PhysRevMaterials.2.104201

DO - 10.1103/PhysRevMaterials.2.104201

M3 - Article

AN - SCOPUS:85059837446

VL - 2

JO - Physical Review Materials

JF - Physical Review Materials

SN - 2475-9953

IS - 10

M1 - 104201

ER -

ID: 18143814