Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Elementary formulas for kirchhoff index of mobius ladder and prism graphs. / Baigonakova, G. A.; Mednykh, A. D.
в: Сибирские электронные математические известия, Том 16, 117, 21.11.2019, стр. 1654-1661.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Elementary formulas for kirchhoff index of mobius ladder and prism graphs
AU - Baigonakova, G. A.
AU - Mednykh, A. D.
N1 - Publisher Copyright: © 2019 Baigonakova G.A., Mednykh A.D. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2019/11/21
Y1 - 2019/11/21
N2 - Let G be a finite connected graph on n vertices with Laplacian spectrum 0 = λ1 < λ2 ≤... ≤ λn: The Kirchhoff index of G is defined by the formula The aim of this paper is to find an explicit analytical formula for the Kirchhoff index of Mobius ladder graph Mn = C2n(1; n) and Prism graph Prn = Cn x P2. The obtained formulas provide a simple asymptotical behavior of both invariants as n is going to the infinity.
AB - Let G be a finite connected graph on n vertices with Laplacian spectrum 0 = λ1 < λ2 ≤... ≤ λn: The Kirchhoff index of G is defined by the formula The aim of this paper is to find an explicit analytical formula for the Kirchhoff index of Mobius ladder graph Mn = C2n(1; n) and Prism graph Prn = Cn x P2. The obtained formulas provide a simple asymptotical behavior of both invariants as n is going to the infinity.
KW - Chebyshev polynomial
KW - Circulant graph
KW - Kirchhoff index
KW - Laplacian matrix
KW - Wiener index
KW - WIENER
KW - circulant graph
KW - RESISTANCE-DISTANCE
UR - http://www.scopus.com/inward/record.url?scp=85083419677&partnerID=8YFLogxK
U2 - 10.33048/SEMI.2019.16.117
DO - 10.33048/SEMI.2019.16.117
M3 - Article
AN - SCOPUS:85083419677
VL - 16
SP - 1654
EP - 1661
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
M1 - 117
ER -
ID: 24076668