Standard

Elementary formulas for kirchhoff index of mobius ladder and prism graphs. / Baigonakova, G. A.; Mednykh, A. D.

в: Сибирские электронные математические известия, Том 16, 117, 21.11.2019, стр. 1654-1661.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Baigonakova, GA & Mednykh, AD 2019, 'Elementary formulas for kirchhoff index of mobius ladder and prism graphs', Сибирские электронные математические известия, Том. 16, 117, стр. 1654-1661. https://doi.org/10.33048/SEMI.2019.16.117

APA

Baigonakova, G. A., & Mednykh, A. D. (2019). Elementary formulas for kirchhoff index of mobius ladder and prism graphs. Сибирские электронные математические известия, 16, 1654-1661. [117]. https://doi.org/10.33048/SEMI.2019.16.117

Vancouver

Baigonakova GA, Mednykh AD. Elementary formulas for kirchhoff index of mobius ladder and prism graphs. Сибирские электронные математические известия. 2019 нояб. 21;16:1654-1661. 117. doi: 10.33048/SEMI.2019.16.117

Author

Baigonakova, G. A. ; Mednykh, A. D. / Elementary formulas for kirchhoff index of mobius ladder and prism graphs. в: Сибирские электронные математические известия. 2019 ; Том 16. стр. 1654-1661.

BibTeX

@article{eade6264d8e24d518bc27782b4157581,
title = "Elementary formulas for kirchhoff index of mobius ladder and prism graphs",
abstract = "Let G be a finite connected graph on n vertices with Laplacian spectrum 0 = λ1 < λ2 ≤... ≤ λn: The Kirchhoff index of G is defined by the formula The aim of this paper is to find an explicit analytical formula for the Kirchhoff index of Mobius ladder graph Mn = C2n(1; n) and Prism graph Prn = Cn x P2. The obtained formulas provide a simple asymptotical behavior of both invariants as n is going to the infinity.",
keywords = "Chebyshev polynomial, Circulant graph, Kirchhoff index, Laplacian matrix, Wiener index, WIENER, circulant graph, RESISTANCE-DISTANCE",
author = "Baigonakova, {G. A.} and Mednykh, {A. D.}",
note = "Publisher Copyright: {\textcopyright} 2019 Baigonakova G.A., Mednykh A.D. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2019",
month = nov,
day = "21",
doi = "10.33048/SEMI.2019.16.117",
language = "English",
volume = "16",
pages = "1654--1661",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Elementary formulas for kirchhoff index of mobius ladder and prism graphs

AU - Baigonakova, G. A.

AU - Mednykh, A. D.

N1 - Publisher Copyright: © 2019 Baigonakova G.A., Mednykh A.D. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2019/11/21

Y1 - 2019/11/21

N2 - Let G be a finite connected graph on n vertices with Laplacian spectrum 0 = λ1 < λ2 ≤... ≤ λn: The Kirchhoff index of G is defined by the formula The aim of this paper is to find an explicit analytical formula for the Kirchhoff index of Mobius ladder graph Mn = C2n(1; n) and Prism graph Prn = Cn x P2. The obtained formulas provide a simple asymptotical behavior of both invariants as n is going to the infinity.

AB - Let G be a finite connected graph on n vertices with Laplacian spectrum 0 = λ1 < λ2 ≤... ≤ λn: The Kirchhoff index of G is defined by the formula The aim of this paper is to find an explicit analytical formula for the Kirchhoff index of Mobius ladder graph Mn = C2n(1; n) and Prism graph Prn = Cn x P2. The obtained formulas provide a simple asymptotical behavior of both invariants as n is going to the infinity.

KW - Chebyshev polynomial

KW - Circulant graph

KW - Kirchhoff index

KW - Laplacian matrix

KW - Wiener index

KW - WIENER

KW - circulant graph

KW - RESISTANCE-DISTANCE

UR - http://www.scopus.com/inward/record.url?scp=85083419677&partnerID=8YFLogxK

U2 - 10.33048/SEMI.2019.16.117

DO - 10.33048/SEMI.2019.16.117

M3 - Article

AN - SCOPUS:85083419677

VL - 16

SP - 1654

EP - 1661

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

M1 - 117

ER -

ID: 24076668