Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Effect of surface cations on the CO2 capture performance of montmorillonite. / Kasprzhitskii, Anton; Lazorenko, Georgy.
в: Solid State Communications, Том 397, 115785, 01.03.2025.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Effect of surface cations on the CO2 capture performance of montmorillonite
AU - Kasprzhitskii, Anton
AU - Lazorenko, Georgy
N1 - Сведения о финансировании Финансирующий спонсор Номер финансирования Ministry of Education and Science of the Russian Federation FSUS-2024-0027
PY - 2025/3/1
Y1 - 2025/3/1
N2 - This study investigated the adsorption of CO2 on three cation-exchanged montmorillonites (Li-Mt, Na-Mt, K-Mt) using density functional theory (DFT). CO2 adsorption primarily occurred through electrostatic attraction with the surface cation, decreasing in strength: Li-Mt > Na-Mt > K-Mt. Li-Mt showed the strongest adsorption capacity. Significant charge transfer occurred between the CO2 molecule and the montmorillonite surface, facilitated by orbital hybridization between CO2 and surface cations. These interactions formed ionic bonds, stabilizing the adsorbed CO2. The addition of a water molecule affected the adsorption configurations, bond lengths, and the occupancy of CO2 on cation-substituted montmorillonite. This computational analysis provided insights into CO2 capture mechanisms by montmorillonite, highlighting the influence of different surface cations on adsorption efficiency. These findings could inform the design of more effective clay-based materials for carbon capture applications.
AB - This study investigated the adsorption of CO2 on three cation-exchanged montmorillonites (Li-Mt, Na-Mt, K-Mt) using density functional theory (DFT). CO2 adsorption primarily occurred through electrostatic attraction with the surface cation, decreasing in strength: Li-Mt > Na-Mt > K-Mt. Li-Mt showed the strongest adsorption capacity. Significant charge transfer occurred between the CO2 molecule and the montmorillonite surface, facilitated by orbital hybridization between CO2 and surface cations. These interactions formed ionic bonds, stabilizing the adsorbed CO2. The addition of a water molecule affected the adsorption configurations, bond lengths, and the occupancy of CO2 on cation-substituted montmorillonite. This computational analysis provided insights into CO2 capture mechanisms by montmorillonite, highlighting the influence of different surface cations on adsorption efficiency. These findings could inform the design of more effective clay-based materials for carbon capture applications.
KW - Alkali metal cation
KW - CO2
KW - Carbon capture
KW - Density functional theory
KW - Montmorillonite
UR - https://www.mendeley.com/catalogue/fd67c11c-22ee-37ad-9321-54aff96c7c8d/
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85211500957&origin=inward&txGid=a85cd910a4cf8c0555661b5b6881390b
U2 - 10.1016/j.ssc.2024.115785
DO - 10.1016/j.ssc.2024.115785
M3 - Article
VL - 397
JO - Solid State Communications
JF - Solid State Communications
SN - 0038-1098
M1 - 115785
ER -
ID: 62800721