Standard

Effect of sound-absorbing coatings on the disturbance evolution in a flow of a mixture of vibrationally excited gases. / Reshetova, A. I.; Poplavskaya, T. V.; Kirilovskiy, S. V. и др.

в: Journal of Physics: Conference Series, Том 894, № 1, 012137, 22.10.2017.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Reshetova, AI, Poplavskaya, TV, Kirilovskiy, SV & Tsyrulnikov, IS 2017, 'Effect of sound-absorbing coatings on the disturbance evolution in a flow of a mixture of vibrationally excited gases', Journal of Physics: Conference Series, Том. 894, № 1, 012137. https://doi.org/10.1088/1742-6596/894/1/012137

APA

Reshetova, A. I., Poplavskaya, T. V., Kirilovskiy, S. V., & Tsyrulnikov, I. S. (2017). Effect of sound-absorbing coatings on the disturbance evolution in a flow of a mixture of vibrationally excited gases. Journal of Physics: Conference Series, 894(1), [012137]. https://doi.org/10.1088/1742-6596/894/1/012137

Vancouver

Reshetova AI, Poplavskaya TV, Kirilovskiy SV, Tsyrulnikov IS. Effect of sound-absorbing coatings on the disturbance evolution in a flow of a mixture of vibrationally excited gases. Journal of Physics: Conference Series. 2017 окт. 22;894(1):012137. doi: 10.1088/1742-6596/894/1/012137

Author

Reshetova, A. I. ; Poplavskaya, T. V. ; Kirilovskiy, S. V. и др. / Effect of sound-absorbing coatings on the disturbance evolution in a flow of a mixture of vibrationally excited gases. в: Journal of Physics: Conference Series. 2017 ; Том 894, № 1.

BibTeX

@article{a4d49af2af8c4af09157616bf62a07ce,
title = "Effect of sound-absorbing coatings on the disturbance evolution in a flow of a mixture of vibrationally excited gases",
abstract = "The flow around a solid plate and a plate with a sound-absorbing coating at a non-zero angle of attack in a hypersonic flow (M∞=8.44) of a mixture of vibrationally excited carbon dioxide and nitrogen is considered. Numerical simulations are performed by solving two-dimensional unsteady Navier-Stokes equations with a two-temperature model of relaxing flows. The vibrational energy as a function of time is defined by the Landau-Teller equation. A skeleton model, which is a set of square elements arranged in a staggered order, is used for simulating the porous coating made of foamed nickel with a porosity coefficient of 95%. The distance between the elements is equal to the pore diameter of the real sound-absorbing material. Data on the evolution of disturbances on the solid plate and on the plate with the sound-absorbing coating are presented for various angles of attack and CO2 concentrations in the mixture. The experimental and calculated data on pressure fluctuations on the plate surfaces are found to be in good agreement. The effects of various parameters of the sound-absorbing coating (depth, length, and location at the flat plate) are considered. It is shown that the sound-absorbing coating significantly reduces the intensity of pressure fluctuations on the plate surface as compared to the solid surface (up to 50% depending on the length and location of the sound-absorbing coating).",
keywords = "SHOCK LAYER, PLATE",
author = "Reshetova, {A. I.} and Poplavskaya, {T. V.} and Kirilovskiy, {S. V.} and Tsyrulnikov, {I. S.}",
year = "2017",
month = oct,
day = "22",
doi = "10.1088/1742-6596/894/1/012137",
language = "English",
volume = "894",
journal = "Journal of Physics: Conference Series",
issn = "1742-6588",
publisher = "IOP Publishing Ltd.",
number = "1",

}

RIS

TY - JOUR

T1 - Effect of sound-absorbing coatings on the disturbance evolution in a flow of a mixture of vibrationally excited gases

AU - Reshetova, A. I.

AU - Poplavskaya, T. V.

AU - Kirilovskiy, S. V.

AU - Tsyrulnikov, I. S.

PY - 2017/10/22

Y1 - 2017/10/22

N2 - The flow around a solid plate and a plate with a sound-absorbing coating at a non-zero angle of attack in a hypersonic flow (M∞=8.44) of a mixture of vibrationally excited carbon dioxide and nitrogen is considered. Numerical simulations are performed by solving two-dimensional unsteady Navier-Stokes equations with a two-temperature model of relaxing flows. The vibrational energy as a function of time is defined by the Landau-Teller equation. A skeleton model, which is a set of square elements arranged in a staggered order, is used for simulating the porous coating made of foamed nickel with a porosity coefficient of 95%. The distance between the elements is equal to the pore diameter of the real sound-absorbing material. Data on the evolution of disturbances on the solid plate and on the plate with the sound-absorbing coating are presented for various angles of attack and CO2 concentrations in the mixture. The experimental and calculated data on pressure fluctuations on the plate surfaces are found to be in good agreement. The effects of various parameters of the sound-absorbing coating (depth, length, and location at the flat plate) are considered. It is shown that the sound-absorbing coating significantly reduces the intensity of pressure fluctuations on the plate surface as compared to the solid surface (up to 50% depending on the length and location of the sound-absorbing coating).

AB - The flow around a solid plate and a plate with a sound-absorbing coating at a non-zero angle of attack in a hypersonic flow (M∞=8.44) of a mixture of vibrationally excited carbon dioxide and nitrogen is considered. Numerical simulations are performed by solving two-dimensional unsteady Navier-Stokes equations with a two-temperature model of relaxing flows. The vibrational energy as a function of time is defined by the Landau-Teller equation. A skeleton model, which is a set of square elements arranged in a staggered order, is used for simulating the porous coating made of foamed nickel with a porosity coefficient of 95%. The distance between the elements is equal to the pore diameter of the real sound-absorbing material. Data on the evolution of disturbances on the solid plate and on the plate with the sound-absorbing coating are presented for various angles of attack and CO2 concentrations in the mixture. The experimental and calculated data on pressure fluctuations on the plate surfaces are found to be in good agreement. The effects of various parameters of the sound-absorbing coating (depth, length, and location at the flat plate) are considered. It is shown that the sound-absorbing coating significantly reduces the intensity of pressure fluctuations on the plate surface as compared to the solid surface (up to 50% depending on the length and location of the sound-absorbing coating).

KW - SHOCK LAYER

KW - PLATE

UR - http://www.scopus.com/inward/record.url?scp=85033227775&partnerID=8YFLogxK

U2 - 10.1088/1742-6596/894/1/012137

DO - 10.1088/1742-6596/894/1/012137

M3 - Article

AN - SCOPUS:85033227775

VL - 894

JO - Journal of Physics: Conference Series

JF - Journal of Physics: Conference Series

SN - 1742-6588

IS - 1

M1 - 012137

ER -

ID: 9721057