Standard

Dynamics of the cubic Darboux systems. / Pavlovich, Volokitin Evgenii; Mikhaiĭlovich, Cheresiz Vladimir.

в: Сибирские электронные математические известия, Том 14, 01.01.2017, стр. 889-902.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Pavlovich, VE & Mikhaiĭlovich, CV 2017, 'Dynamics of the cubic Darboux systems', Сибирские электронные математические известия, Том. 14, стр. 889-902. https://doi.org/10.17377/semi.2017.14.075

APA

Pavlovich, V. E., & Mikhaiĭlovich, C. V. (2017). Dynamics of the cubic Darboux systems. Сибирские электронные математические известия, 14, 889-902. https://doi.org/10.17377/semi.2017.14.075

Vancouver

Pavlovich VE, Mikhaiĭlovich CV. Dynamics of the cubic Darboux systems. Сибирские электронные математические известия. 2017 янв. 1;14:889-902. doi: 10.17377/semi.2017.14.075

Author

Pavlovich, Volokitin Evgenii ; Mikhaiĭlovich, Cheresiz Vladimir. / Dynamics of the cubic Darboux systems. в: Сибирские электронные математические известия. 2017 ; Том 14. стр. 889-902.

BibTeX

@article{e730b230a2474299b963aa15ce08232d,
title = "Dynamics of the cubic Darboux systems",
abstract = "We study the local and global behavior of the trajectories of the differential systems of the form x˙ = x+p3(x, y), y˙ = y+q3(x, y) where p3(x, y), q3(x, y) are relatively prime homogeneous cubic polynomials.",
keywords = "Phase portraits, Poincar{\'e} equator, Polynomial systems, Singular points, polynomial systems, singular points, Poincare equator, phase portraits",
author = "Pavlovich, {Volokitin Evgenii} and Mikhaiĭlovich, {Cheresiz Vladimir}",
year = "2017",
month = jan,
day = "1",
doi = "10.17377/semi.2017.14.075",
language = "English",
volume = "14",
pages = "889--902",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Dynamics of the cubic Darboux systems

AU - Pavlovich, Volokitin Evgenii

AU - Mikhaiĭlovich, Cheresiz Vladimir

PY - 2017/1/1

Y1 - 2017/1/1

N2 - We study the local and global behavior of the trajectories of the differential systems of the form x˙ = x+p3(x, y), y˙ = y+q3(x, y) where p3(x, y), q3(x, y) are relatively prime homogeneous cubic polynomials.

AB - We study the local and global behavior of the trajectories of the differential systems of the form x˙ = x+p3(x, y), y˙ = y+q3(x, y) where p3(x, y), q3(x, y) are relatively prime homogeneous cubic polynomials.

KW - Phase portraits

KW - Poincaré equator

KW - Polynomial systems

KW - Singular points

KW - polynomial systems

KW - singular points

KW - Poincare equator

KW - phase portraits

UR - http://www.scopus.com/inward/record.url?scp=85066851690&partnerID=8YFLogxK

U2 - 10.17377/semi.2017.14.075

DO - 10.17377/semi.2017.14.075

M3 - Article

AN - SCOPUS:85066851690

VL - 14

SP - 889

EP - 902

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 20777188