Standard

Discrete Parabolic Functions and Taylor Series. / Lu, X.; Danilov, O. A.; Mednykh, A. D.

в: Siberian Mathematical Journal, Том 66, № 6, 8, 11.2025, стр. 1409-1421.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Lu, X, Danilov, OA & Mednykh, AD 2025, 'Discrete Parabolic Functions and Taylor Series', Siberian Mathematical Journal, Том. 66, № 6, 8, стр. 1409-1421. https://doi.org/10.1134/S0037446625060084

APA

Vancouver

Lu X, Danilov OA, Mednykh AD. Discrete Parabolic Functions and Taylor Series. Siberian Mathematical Journal. 2025 нояб.;66(6):1409-1421. 8. doi: 10.1134/S0037446625060084

Author

Lu, X. ; Danilov, O. A. ; Mednykh, A. D. / Discrete Parabolic Functions and Taylor Series. в: Siberian Mathematical Journal. 2025 ; Том 66, № 6. стр. 1409-1421.

BibTeX

@article{b7fad7e0f4df4ec38f2c12e7586805b5,
title = "Discrete Parabolic Functions and Taylor Series",
abstract = "We prove that every discrete parabolic function defined in the positive quadrant of the Gaussian plane admits an expansion into an absolutely convergent Taylor series with respect to a system of pseudopowers.",
keywords = "517.537, Gelfond–Sheffer theorem, Taylor series, discrete parabolic function, entire function",
author = "X. Lu and Danilov, {O. A.} and Mednykh, {A. D.}",
note = "Lu, X. Discrete Parabolic Functions and Taylor Series / X. Lu, O. A. Danilov, A. D. Mednykh // Siberian Mathematical Journal. – 2025. – Vol. 66, No. 6. – P. 1409-1421. – DOI 10.1134/S0037446625060084. – EDN XKNMFZ. The research of Lu was supported by the China Scholarship Council (Grant 202110100026). The research of Mednykh was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2026–0026).",
year = "2025",
month = nov,
doi = "10.1134/S0037446625060084",
language = "English",
volume = "66",
pages = "1409--1421",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "Pleiades Publishing",
number = "6",

}

RIS

TY - JOUR

T1 - Discrete Parabolic Functions and Taylor Series

AU - Lu, X.

AU - Danilov, O. A.

AU - Mednykh, A. D.

N1 - Lu, X. Discrete Parabolic Functions and Taylor Series / X. Lu, O. A. Danilov, A. D. Mednykh // Siberian Mathematical Journal. – 2025. – Vol. 66, No. 6. – P. 1409-1421. – DOI 10.1134/S0037446625060084. – EDN XKNMFZ. The research of Lu was supported by the China Scholarship Council (Grant 202110100026). The research of Mednykh was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2026–0026).

PY - 2025/11

Y1 - 2025/11

N2 - We prove that every discrete parabolic function defined in the positive quadrant of the Gaussian plane admits an expansion into an absolutely convergent Taylor series with respect to a system of pseudopowers.

AB - We prove that every discrete parabolic function defined in the positive quadrant of the Gaussian plane admits an expansion into an absolutely convergent Taylor series with respect to a system of pseudopowers.

KW - 517.537

KW - Gelfond–Sheffer theorem

KW - Taylor series

KW - discrete parabolic function

KW - entire function

UR - https://www.scopus.com/pages/publications/105022712669

UR - https://elibrary.ru/item.asp?id=84013586

UR - https://www.mendeley.com/catalogue/00d6e47c-3e5b-3da9-8a79-f622b990a89e/

U2 - 10.1134/S0037446625060084

DO - 10.1134/S0037446625060084

M3 - Article

VL - 66

SP - 1409

EP - 1421

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 6

M1 - 8

ER -

ID: 72346232