Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Discrete Parabolic Functions and Taylor Series. / Lu, X.; Danilov, O. A.; Mednykh, A. D.
в: Siberian Mathematical Journal, Том 66, № 6, 8, 11.2025, стр. 1409-1421.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Discrete Parabolic Functions and Taylor Series
AU - Lu, X.
AU - Danilov, O. A.
AU - Mednykh, A. D.
N1 - Lu, X. Discrete Parabolic Functions and Taylor Series / X. Lu, O. A. Danilov, A. D. Mednykh // Siberian Mathematical Journal. – 2025. – Vol. 66, No. 6. – P. 1409-1421. – DOI 10.1134/S0037446625060084. – EDN XKNMFZ. The research of Lu was supported by the China Scholarship Council (Grant 202110100026). The research of Mednykh was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2026–0026).
PY - 2025/11
Y1 - 2025/11
N2 - We prove that every discrete parabolic function defined in the positive quadrant of the Gaussian plane admits an expansion into an absolutely convergent Taylor series with respect to a system of pseudopowers.
AB - We prove that every discrete parabolic function defined in the positive quadrant of the Gaussian plane admits an expansion into an absolutely convergent Taylor series with respect to a system of pseudopowers.
KW - 517.537
KW - Gelfond–Sheffer theorem
KW - Taylor series
KW - discrete parabolic function
KW - entire function
UR - https://www.scopus.com/pages/publications/105022712669
UR - https://elibrary.ru/item.asp?id=84013586
UR - https://www.mendeley.com/catalogue/00d6e47c-3e5b-3da9-8a79-f622b990a89e/
U2 - 10.1134/S0037446625060084
DO - 10.1134/S0037446625060084
M3 - Article
VL - 66
SP - 1409
EP - 1421
JO - Siberian Mathematical Journal
JF - Siberian Mathematical Journal
SN - 0037-4466
IS - 6
M1 - 8
ER -
ID: 72346232