Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Direct data assimilation algorithms for advection-diffusion models with the increased smoothness of the uncertainty functions. / Penenko, Alexey; Penenko, Vladimir; Mukatova, Zhadyra.
Proceedings - 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2017. Institute of Electrical and Electronics Engineers Inc., 2017. стр. 126-130 8109853.Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Direct data assimilation algorithms for advection-diffusion models with the increased smoothness of the uncertainty functions
AU - Penenko, Alexey
AU - Penenko, Vladimir
AU - Mukatova, Zhadyra
PY - 2017/11/14
Y1 - 2017/11/14
N2 - Direct variational data assimilation algorithm for the non-stationary one-dimensional advection-diffusion model and in situ measurements is presented. Data assimilation is carried out by adjusting the uncertainty (control) function that has the sense of the emission sources. In the algorithm a target functional containing the misfit between the modeled and measured values and a regularizer, containing a norm of the control function derivative, is minimized on every time step of the discretized advection-diffusion model. The minimum is obtained by the solution of the tri-diagonal matrix system. The performance of the algorithm was evaluated in the numerical experiments.
AB - Direct variational data assimilation algorithm for the non-stationary one-dimensional advection-diffusion model and in situ measurements is presented. Data assimilation is carried out by adjusting the uncertainty (control) function that has the sense of the emission sources. In the algorithm a target functional containing the misfit between the modeled and measured values and a regularizer, containing a norm of the control function derivative, is minimized on every time step of the discretized advection-diffusion model. The minimum is obtained by the solution of the tri-diagonal matrix system. The performance of the algorithm was evaluated in the numerical experiments.
KW - Advection-diffusion model
KW - Data assimilation
KW - Finite-difference scheme
KW - Variational approach
UR - http://www.scopus.com/inward/record.url?scp=85040519469&partnerID=8YFLogxK
U2 - 10.1109/SIBIRCON.2017.8109853
DO - 10.1109/SIBIRCON.2017.8109853
M3 - Conference contribution
AN - SCOPUS:85040519469
SP - 126
EP - 130
BT - Proceedings - 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2017
Y2 - 18 September 2017 through 22 September 2017
ER -
ID: 9133607