Standard

Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem. / Kachurovskii, A. G.; Knizhov, K. I.

в: Doklady Mathematics, Том 97, № 3, 01.05.2018, стр. 211-214.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kachurovskii, AG & Knizhov, KI 2018, 'Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem', Doklady Mathematics, Том. 97, № 3, стр. 211-214. https://doi.org/10.1134/S1064562418030031

APA

Kachurovskii, A. G., & Knizhov, K. I. (2018). Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem. Doklady Mathematics, 97(3), 211-214. https://doi.org/10.1134/S1064562418030031

Vancouver

Kachurovskii AG, Knizhov KI. Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem. Doklady Mathematics. 2018 май 1;97(3):211-214. doi: 10.1134/S1064562418030031

Author

Kachurovskii, A. G. ; Knizhov, K. I. / Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem. в: Doklady Mathematics. 2018 ; Том 97, № 3. стр. 211-214.

BibTeX

@article{e9c33239e73e47f4b075891c0c4c6919,
title = "Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem",
abstract = "It turns out that the deviations of the Fejer sums for continuous 2π-periodic functions and the rates of convergence in the von Neumann ergodic theorem can both be calculated using, in fact, the same formulas (by integrating the Fejer kernels). As a result, for many dynamical systems popular in applications, the rates of convergence in the von Neumann ergodic theorem can be estimated with a sharp leading coefficient of the asymptotic by applying S.N. Bernstein{\textquoteright}s more than hundred-year old results in harmonic analysis.",
author = "Kachurovskii, {A. G.} and Knizhov, {K. I.}",
year = "2018",
month = may,
day = "1",
doi = "10.1134/S1064562418030031",
language = "English",
volume = "97",
pages = "211--214",
journal = "Doklady Mathematics",
issn = "1064-5624",
publisher = "Maik Nauka-Interperiodica Publishing",
number = "3",

}

RIS

TY - JOUR

T1 - Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem

AU - Kachurovskii, A. G.

AU - Knizhov, K. I.

PY - 2018/5/1

Y1 - 2018/5/1

N2 - It turns out that the deviations of the Fejer sums for continuous 2π-periodic functions and the rates of convergence in the von Neumann ergodic theorem can both be calculated using, in fact, the same formulas (by integrating the Fejer kernels). As a result, for many dynamical systems popular in applications, the rates of convergence in the von Neumann ergodic theorem can be estimated with a sharp leading coefficient of the asymptotic by applying S.N. Bernstein’s more than hundred-year old results in harmonic analysis.

AB - It turns out that the deviations of the Fejer sums for continuous 2π-periodic functions and the rates of convergence in the von Neumann ergodic theorem can both be calculated using, in fact, the same formulas (by integrating the Fejer kernels). As a result, for many dynamical systems popular in applications, the rates of convergence in the von Neumann ergodic theorem can be estimated with a sharp leading coefficient of the asymptotic by applying S.N. Bernstein’s more than hundred-year old results in harmonic analysis.

UR - http://www.scopus.com/inward/record.url?scp=85050139539&partnerID=8YFLogxK

U2 - 10.1134/S1064562418030031

DO - 10.1134/S1064562418030031

M3 - Article

AN - SCOPUS:85050139539

VL - 97

SP - 211

EP - 214

JO - Doklady Mathematics

JF - Doklady Mathematics

SN - 1064-5624

IS - 3

ER -

ID: 15966014