Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Development of Software Tools Based on Clinical Data and Phantom Studies for Mathematical Simulation Modeling to Assess Brain Perfusion and Improve Image Quality During SPECT/CT with99mTc-GMPAO. / Denisova, Natalia Vasilyevna; Nesterova, A. V.; Minin, S. M. и др.
в: Medical Radiology and Radiation Safety, Том 68, № 6, 2023, стр. 106-117.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Development of Software Tools Based on Clinical Data and Phantom Studies for Mathematical Simulation Modeling to Assess Brain Perfusion and Improve Image Quality During SPECT/CT with99mTc-GMPAO
AU - Denisova, Natalia Vasilyevna
AU - Nesterova, A. V.
AU - Minin, S. M.
AU - Anashbayev, Zh Zh
AU - Krasilnikov, S. E.
AU - Ussov, W. Yu
N1 - Публикация для корреткировки.
PY - 2023
Y1 - 2023
N2 - Purpose: To develop a software package Virtual examination of brain perfusion by the method of SPECT/CT with99mTc-HMPAO (Teoxime) and its practical application to study the conditions for achieving the best image quality in clinical studies of patients. Material and methods: The studies were performed using clinical data and the method of computer simulation. Clinical data of single-photon emission computed tomography combined with X-ray computed tomography (SPECT/CT) with99mTc-hexa-methylpropyleneamine oxime (99mTc-Teoxime, produced by DIAMED LLC) of a patient with an ischemic stroke of the right frontal cortex were obtained on a two-detector gamma-camera NM/CT 670 DR GE Discovery (USA) using high-resolution low-energy collimators (LEHR). The measured data were processed using specialized software Q.Brain and Q.Volumetrix MI on a Xeleris 4.0 DR workstation from GE Healthcare (USA) to obtain reconstructed axial tomographic slices. To carry out simulation computer simulation of the procedure of examination of perfusion of GM by the method of SPECT/CT has developed a software package that includes a mathematical Hoffman phantom with the ability to simulate clinical cases of hy-poperfusion of different localization and size (Virtual Patient), modeling the collection of “raw” projection data and an image reconstruction program based on the OSEM algorithm (Ordered Subset Expectation Maximization). An important advantage of the mathematical modeling method is the ability to assess the quality of the reconstructed image by calculating the root-mean-square error when compared with a given phantom. In numerical experiments, the dependence of the reconstruction error on the parameters of the OSEM algorithm (on the number of subgroups – subsets, and on the number of iterations) was investigated in order to determine the conditions for achieving the best image quality. A statistical stop criterion was developed and tested. Results: For the first time, a software package was developed and tested that allows us to investigate errors in the reconstruction algorithm, which is a great difficulty when using clinical research methods. A criterion for stopping iterations is proposed when using the OSEM reconstruction algorithm – minimizing the functional deviation of the chi-square function from the target value, while the detector pixels with non-zero values are combined into blocks according to the 2×2 scheme. There is a reliable good correlation between the proposed stop criterion and the minimum of the root-mean-square error of image reconstruction. This makes it possible to introduce this criterion into the clinical practice of using computational tools for reconstructing sections of the SPECT to obtain the best image. The simulation results demonstrated the possibility of reducing the time of data recording, during which the patient must remain motionless, at least twice. Conclusion: The method of computer simulation developed in this work is a practically useful technology that helps optimize the use of SPECT to achieve the best possible results of brain imaging in patients.
AB - Purpose: To develop a software package Virtual examination of brain perfusion by the method of SPECT/CT with99mTc-HMPAO (Teoxime) and its practical application to study the conditions for achieving the best image quality in clinical studies of patients. Material and methods: The studies were performed using clinical data and the method of computer simulation. Clinical data of single-photon emission computed tomography combined with X-ray computed tomography (SPECT/CT) with99mTc-hexa-methylpropyleneamine oxime (99mTc-Teoxime, produced by DIAMED LLC) of a patient with an ischemic stroke of the right frontal cortex were obtained on a two-detector gamma-camera NM/CT 670 DR GE Discovery (USA) using high-resolution low-energy collimators (LEHR). The measured data were processed using specialized software Q.Brain and Q.Volumetrix MI on a Xeleris 4.0 DR workstation from GE Healthcare (USA) to obtain reconstructed axial tomographic slices. To carry out simulation computer simulation of the procedure of examination of perfusion of GM by the method of SPECT/CT has developed a software package that includes a mathematical Hoffman phantom with the ability to simulate clinical cases of hy-poperfusion of different localization and size (Virtual Patient), modeling the collection of “raw” projection data and an image reconstruction program based on the OSEM algorithm (Ordered Subset Expectation Maximization). An important advantage of the mathematical modeling method is the ability to assess the quality of the reconstructed image by calculating the root-mean-square error when compared with a given phantom. In numerical experiments, the dependence of the reconstruction error on the parameters of the OSEM algorithm (on the number of subgroups – subsets, and on the number of iterations) was investigated in order to determine the conditions for achieving the best image quality. A statistical stop criterion was developed and tested. Results: For the first time, a software package was developed and tested that allows us to investigate errors in the reconstruction algorithm, which is a great difficulty when using clinical research methods. A criterion for stopping iterations is proposed when using the OSEM reconstruction algorithm – minimizing the functional deviation of the chi-square function from the target value, while the detector pixels with non-zero values are combined into blocks according to the 2×2 scheme. There is a reliable good correlation between the proposed stop criterion and the minimum of the root-mean-square error of image reconstruction. This makes it possible to introduce this criterion into the clinical practice of using computational tools for reconstructing sections of the SPECT to obtain the best image. The simulation results demonstrated the possibility of reducing the time of data recording, during which the patient must remain motionless, at least twice. Conclusion: The method of computer simulation developed in this work is a practically useful technology that helps optimize the use of SPECT to achieve the best possible results of brain imaging in patients.
KW - Hoffman’s phantom
KW - SPECT/CT
KW - brain perfusion
KW - computer modeling
KW - iterative reconstruction algorith
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85179363297&origin=inward&txGid=3b8a3b4d5efa1929dcc501fbb7bf8998
UR - https://www.mendeley.com/catalogue/a3982dcf-62b0-376e-b685-eebdea53b1b4/
U2 - 10.33266/1024-6177-2023-68-6-106-117
DO - 10.33266/1024-6177-2023-68-6-106-117
M3 - Article
VL - 68
SP - 106
EP - 117
JO - Медицинская радиология и радиационная безопасность
JF - Медицинская радиология и радиационная безопасность
SN - 1024-6177
IS - 6
ER -
ID: 59773787