Результаты исследований: Научные публикации в периодических изданиях › статья по материалам конференции › Рецензирование
Development of parallel FRiS-Tax text document clustering algorithm based on MPI technology. / Mansurova, M. E.; Barakhnin, V. B.; Aubakirov, S. S. и др.
в: CEUR Workshop Proceedings, Том 1576, 2016, стр. 244-256.Результаты исследований: Научные публикации в периодических изданиях › статья по материалам конференции › Рецензирование
}
TY - JOUR
T1 - Development of parallel FRiS-Tax text document clustering algorithm based on MPI technology
AU - Mansurova, M. E.
AU - Barakhnin, V. B.
AU - Aubakirov, S. S.
AU - Khibatkhanuly, Ye
AU - Mussina, A. B.
PY - 2016
Y1 - 2016
N2 - This paper describes a parallel implementation of FRiS-Tax text document clustering algorithm. The clustering algorithm is based on an assessment of the similarity between objects in the competitive situation that leads to the concept of competitive similarity function (FRiS-function). As the scales for determination of the similarity measures are selected attributes of bibliographic description of documents. The parallelization is performed on the step of coefficient tuning in similarity measure formula of the genetic algorithm, as well as directly in step of clustering. The clustering algorithm is implemented on a highperformance MPJ Express platform. Quantitative evaluation of the execution time of the process is performed, clearly demonstrating the advantages of parallel implementation of the algorithm.
AB - This paper describes a parallel implementation of FRiS-Tax text document clustering algorithm. The clustering algorithm is based on an assessment of the similarity between objects in the competitive situation that leads to the concept of competitive similarity function (FRiS-function). As the scales for determination of the similarity measures are selected attributes of bibliographic description of documents. The parallelization is performed on the step of coefficient tuning in similarity measure formula of the genetic algorithm, as well as directly in step of clustering. The clustering algorithm is implemented on a highperformance MPJ Express platform. Quantitative evaluation of the execution time of the process is performed, clearly demonstrating the advantages of parallel implementation of the algorithm.
KW - Clustering text documents
KW - Genetic algorithms
KW - Parallel algorithms
UR - http://www.scopus.com/inward/record.url?scp=84978472800&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:84978472800
VL - 1576
SP - 244
EP - 256
JO - CEUR Workshop Proceedings
JF - CEUR Workshop Proceedings
SN - 1613-0073
T2 - 10th Annual International Scientific Conference on Parallel Computing Technologies, PCT 2016
Y2 - 29 March 2016 through 31 March 2016
ER -
ID: 25326562