Standard

Degrees of categoricity of rigid structures. / Bazhenov, Nikolay A.; Yamaleev, Mars M.

Unveiling Dynamics and Complexity - 13th Conference on Computability in Europe, CiE 2017, Proceedings. ред. / J Kari; F Manea; Petre. Том 10307 LNCS Springer-Verlag GmbH and Co. KG, 2017. стр. 152-161 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Том 10307 LNCS).

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаяРецензирование

Harvard

Bazhenov, NA & Yamaleev, MM 2017, Degrees of categoricity of rigid structures. в J Kari, F Manea & Petre (ред.), Unveiling Dynamics and Complexity - 13th Conference on Computability in Europe, CiE 2017, Proceedings. Том. 10307 LNCS, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Том. 10307 LNCS, Springer-Verlag GmbH and Co. KG, стр. 152-161, 13th Conference on Computability in Europe, CiE 2017, Turku, Финляндия, 12.06.2017. https://doi.org/10.1007/978-3-319-58741-7_16

APA

Bazhenov, N. A., & Yamaleev, M. M. (2017). Degrees of categoricity of rigid structures. в J. Kari, F. Manea, & Petre (Ред.), Unveiling Dynamics and Complexity - 13th Conference on Computability in Europe, CiE 2017, Proceedings (Том 10307 LNCS, стр. 152-161). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Том 10307 LNCS). Springer-Verlag GmbH and Co. KG. https://doi.org/10.1007/978-3-319-58741-7_16

Vancouver

Bazhenov NA, Yamaleev MM. Degrees of categoricity of rigid structures. в Kari J, Manea F, Petre, Редакторы, Unveiling Dynamics and Complexity - 13th Conference on Computability in Europe, CiE 2017, Proceedings. Том 10307 LNCS. Springer-Verlag GmbH and Co. KG. 2017. стр. 152-161. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). doi: 10.1007/978-3-319-58741-7_16

Author

Bazhenov, Nikolay A. ; Yamaleev, Mars M. / Degrees of categoricity of rigid structures. Unveiling Dynamics and Complexity - 13th Conference on Computability in Europe, CiE 2017, Proceedings. Редактор / J Kari ; F Manea ; Petre. Том 10307 LNCS Springer-Verlag GmbH and Co. KG, 2017. стр. 152-161 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).

BibTeX

@inproceedings{66afa7c38d6a42f9a61c3669120d772a,
title = "Degrees of categoricity of rigid structures",
abstract = "We prove that there exists a properly 2-c.e. Turing degree d which cannot be a degree of categoricity of a rigid structure.",
keywords = "2-c.e. turing degrees, Categoricity spectrum, Rigid structure, Strong degree of categoricity, 2-c.e. Turing degrees, COMPUTABLE CATEGORICITY, SPECTRA, AUTOSTABILITY",
author = "Bazhenov, {Nikolay A.} and Yamaleev, {Mars M.}",
note = "Publisher Copyright: {\textcopyright} Springer International Publishing AG 2017.; 13th Conference on Computability in Europe, CiE 2017 ; Conference date: 12-06-2017 Through 16-06-2017",
year = "2017",
month = jan,
day = "1",
doi = "10.1007/978-3-319-58741-7_16",
language = "English",
isbn = "9783319587400",
volume = "10307 LNCS",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer-Verlag GmbH and Co. KG",
pages = "152--161",
editor = "J Kari and F Manea and Petre",
booktitle = "Unveiling Dynamics and Complexity - 13th Conference on Computability in Europe, CiE 2017, Proceedings",
address = "Germany",

}

RIS

TY - GEN

T1 - Degrees of categoricity of rigid structures

AU - Bazhenov, Nikolay A.

AU - Yamaleev, Mars M.

N1 - Publisher Copyright: © Springer International Publishing AG 2017.

PY - 2017/1/1

Y1 - 2017/1/1

N2 - We prove that there exists a properly 2-c.e. Turing degree d which cannot be a degree of categoricity of a rigid structure.

AB - We prove that there exists a properly 2-c.e. Turing degree d which cannot be a degree of categoricity of a rigid structure.

KW - 2-c.e. turing degrees

KW - Categoricity spectrum

KW - Rigid structure

KW - Strong degree of categoricity

KW - 2-c.e. Turing degrees

KW - COMPUTABLE CATEGORICITY

KW - SPECTRA

KW - AUTOSTABILITY

UR - http://www.scopus.com/inward/record.url?scp=85020845392&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-58741-7_16

DO - 10.1007/978-3-319-58741-7_16

M3 - Conference contribution

AN - SCOPUS:85020845392

SN - 9783319587400

VL - 10307 LNCS

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 152

EP - 161

BT - Unveiling Dynamics and Complexity - 13th Conference on Computability in Europe, CiE 2017, Proceedings

A2 - Kari, J

A2 - Manea, F

A2 - Petre, null

PB - Springer-Verlag GmbH and Co. KG

T2 - 13th Conference on Computability in Europe, CiE 2017

Y2 - 12 June 2017 through 16 June 2017

ER -

ID: 10184610