Standard

Degrees of Autostability Relative to Strong Constructivizations of Graphs. / Bazhenov, N. A.; Marchuk, M. I.

в: Siberian Mathematical Journal, Том 59, № 4, 01.07.2018, стр. 565-577.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Bazhenov NA, Marchuk MI. Degrees of Autostability Relative to Strong Constructivizations of Graphs. Siberian Mathematical Journal. 2018 июль 1;59(4):565-577. doi: 10.1134/S0037446618040018

Author

Bazhenov, N. A. ; Marchuk, M. I. / Degrees of Autostability Relative to Strong Constructivizations of Graphs. в: Siberian Mathematical Journal. 2018 ; Том 59, № 4. стр. 565-577.

BibTeX

@article{c06868847ffb4d49aa557c27b81c2d28,
title = "Degrees of Autostability Relative to Strong Constructivizations of Graphs",
abstract = "We show that each computably enumerable Turing degree is a degree of autostability relative to strong constructivizations for a decidable directed graph. We construct a decidable undirected graph whose autostability spectrum relative to strong constructivizations is equal to the set of all PA-degrees.",
keywords = "autostability, autostability relative to strong constructivizations, autostability spectrum relative to strong constructivizations, computable model, computably enumerable degree, degree of autostability relative to strong constructivizations, graph, PA-degree, strongly constructivizable model",
author = "Bazhenov, {N. A.} and Marchuk, {M. I.}",
note = "Publisher Copyright: {\textcopyright} 2018, Pleiades Publishing, Ltd.",
year = "2018",
month = jul,
day = "1",
doi = "10.1134/S0037446618040018",
language = "English",
volume = "59",
pages = "565--577",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "4",

}

RIS

TY - JOUR

T1 - Degrees of Autostability Relative to Strong Constructivizations of Graphs

AU - Bazhenov, N. A.

AU - Marchuk, M. I.

N1 - Publisher Copyright: © 2018, Pleiades Publishing, Ltd.

PY - 2018/7/1

Y1 - 2018/7/1

N2 - We show that each computably enumerable Turing degree is a degree of autostability relative to strong constructivizations for a decidable directed graph. We construct a decidable undirected graph whose autostability spectrum relative to strong constructivizations is equal to the set of all PA-degrees.

AB - We show that each computably enumerable Turing degree is a degree of autostability relative to strong constructivizations for a decidable directed graph. We construct a decidable undirected graph whose autostability spectrum relative to strong constructivizations is equal to the set of all PA-degrees.

KW - autostability

KW - autostability relative to strong constructivizations

KW - autostability spectrum relative to strong constructivizations

KW - computable model

KW - computably enumerable degree

KW - degree of autostability relative to strong constructivizations

KW - graph

KW - PA-degree

KW - strongly constructivizable model

UR - http://www.scopus.com/inward/record.url?scp=85053012158&partnerID=8YFLogxK

U2 - 10.1134/S0037446618040018

DO - 10.1134/S0037446618040018

M3 - Article

AN - SCOPUS:85053012158

VL - 59

SP - 565

EP - 577

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 4

ER -

ID: 16485549