Standard

Degenerating parabolic equations with a variable direction of evolution. / Kozhanov, Alexandr Ivanovich; Macievskaya, Ekaterina Evgenievna.

в: Сибирские электронные математические известия, Том 16, 01.01.2019, стр. 718-731.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kozhanov, AI & Macievskaya, EE 2019, 'Degenerating parabolic equations with a variable direction of evolution', Сибирские электронные математические известия, Том. 16, стр. 718-731. https://doi.org/10.33048/semi.2019.16.048

APA

Kozhanov, A. I., & Macievskaya, E. E. (2019). Degenerating parabolic equations with a variable direction of evolution. Сибирские электронные математические известия, 16, 718-731. https://doi.org/10.33048/semi.2019.16.048

Vancouver

Kozhanov AI, Macievskaya EE. Degenerating parabolic equations with a variable direction of evolution. Сибирские электронные математические известия. 2019 янв. 1;16:718-731. doi: 10.33048/semi.2019.16.048

Author

Kozhanov, Alexandr Ivanovich ; Macievskaya, Ekaterina Evgenievna. / Degenerating parabolic equations with a variable direction of evolution. в: Сибирские электронные математические известия. 2019 ; Том 16. стр. 718-731.

BibTeX

@article{ec5359c85bbd47a5a23e186de0bbc8fb,
title = "Degenerating parabolic equations with a variable direction of evolution",
abstract = "The aim of the paper is to study the solvability in the classes of regular solutions of boundary value problems for differential equations ϕ (t)ut - ψ (t)Δu + c(x, t)u = f(x, t) (x ∈ Ω ⊂ ℝn, 0 < t < T). A feature of these equations is that the function ϕ(t) in them can arbitrarily change the sign on the segment [0, T], while the function ψ (t) is nonnegative for t ∈ [0, T]. For the problems under consideration, we prove existence and uniqueness theorems.",
keywords = "Boundary value problems, Degenerate parabolic equations, Existence, Regular solutions, Uniqueness, Variable direction of evolution, degenerate parabolic equations, variable direction of evolution, boundary value problems, regular solutions, existence, uniqueness",
author = "Kozhanov, {Alexandr Ivanovich} and Macievskaya, {Ekaterina Evgenievna}",
year = "2019",
month = jan,
day = "1",
doi = "10.33048/semi.2019.16.048",
language = "English",
volume = "16",
pages = "718--731",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Degenerating parabolic equations with a variable direction of evolution

AU - Kozhanov, Alexandr Ivanovich

AU - Macievskaya, Ekaterina Evgenievna

PY - 2019/1/1

Y1 - 2019/1/1

N2 - The aim of the paper is to study the solvability in the classes of regular solutions of boundary value problems for differential equations ϕ (t)ut - ψ (t)Δu + c(x, t)u = f(x, t) (x ∈ Ω ⊂ ℝn, 0 < t < T). A feature of these equations is that the function ϕ(t) in them can arbitrarily change the sign on the segment [0, T], while the function ψ (t) is nonnegative for t ∈ [0, T]. For the problems under consideration, we prove existence and uniqueness theorems.

AB - The aim of the paper is to study the solvability in the classes of regular solutions of boundary value problems for differential equations ϕ (t)ut - ψ (t)Δu + c(x, t)u = f(x, t) (x ∈ Ω ⊂ ℝn, 0 < t < T). A feature of these equations is that the function ϕ(t) in them can arbitrarily change the sign on the segment [0, T], while the function ψ (t) is nonnegative for t ∈ [0, T]. For the problems under consideration, we prove existence and uniqueness theorems.

KW - Boundary value problems

KW - Degenerate parabolic equations

KW - Existence

KW - Regular solutions

KW - Uniqueness

KW - Variable direction of evolution

KW - degenerate parabolic equations

KW - variable direction of evolution

KW - boundary value problems

KW - regular solutions

KW - existence

KW - uniqueness

UR - http://www.scopus.com/inward/record.url?scp=85071176175&partnerID=8YFLogxK

UR - https://www.elibrary.ru/item.asp?id=42735092

U2 - 10.33048/semi.2019.16.048

DO - 10.33048/semi.2019.16.048

M3 - Article

AN - SCOPUS:85071176175

VL - 16

SP - 718

EP - 731

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 21348199