Standard

Control of flow around a cylinder by rotary oscillations at a high subcritical Reynolds number. / Palkin, E.; Hadžiabdić, M.; Mullyadzhanov, R. и др.

в: Journal of Fluid Mechanics, Том 855, 18.09.2018, стр. 236-266.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Palkin, E, Hadžiabdić, M, Mullyadzhanov, R & Hanjalić, K 2018, 'Control of flow around a cylinder by rotary oscillations at a high subcritical Reynolds number', Journal of Fluid Mechanics, Том. 855, стр. 236-266. https://doi.org/10.1017/jfm.2018.639

APA

Vancouver

Palkin E, Hadžiabdić M, Mullyadzhanov R, Hanjalić K. Control of flow around a cylinder by rotary oscillations at a high subcritical Reynolds number. Journal of Fluid Mechanics. 2018 сент. 18;855:236-266. doi: 10.1017/jfm.2018.639

Author

Palkin, E. ; Hadžiabdić, M. ; Mullyadzhanov, R. и др. / Control of flow around a cylinder by rotary oscillations at a high subcritical Reynolds number. в: Journal of Fluid Mechanics. 2018 ; Том 855. стр. 236-266.

BibTeX

@article{a3f6d617afdc43d5b357a5775b7db777,
title = "Control of flow around a cylinder by rotary oscillations at a high subcritical Reynolds number",
abstract = "We report on a numerical study of the vortex structure modifications and drag reduction in a flow over a rotationally oscillating circular cylinder at a high subcritical Reynolds number, Re=1:4×105. Considered are eight forcing frequencies f=fe/f0=0:5, 1, 1.5, 2, 2.5, 3, 4, 5 and three forcing amplitudes Δe=ΔD/2U∞ =1, 2, 3, non-dimensionalized with f0, which is the natural vortex-shedding frequency without forcing, U∞ the free-stream velocity, D the diameter of the cylinder. In order to perform a parametric study of a large number of cases (24 in total) with affordable computational resources, the three-dimensional unsteady computations were performed using a wall-integrated (WIN) second-moment (Reynolds-stress) Reynolds-averaged Navier-Stokes (RANS) turbulence closure, verified and validated by a dynamic large-eddy simulations (LES) for selected cases (f = 2.5,Δ = 2 and f = 4, Δ = 2), as well as by the earlier LES and experiments of the flow over a stagnant cylinder at the same Re number described in Palkin et al. (Flow Turbul. Combust., vol. 97 (4), 2016, pp. 1017-1046). The drag reduction was detected at frequencies equal to and larger than f =2.5, while no reduction was observed for the cylinder subjected to oscillations with the natural frequency, even with very different values of the rotation amplitude. The maximum reduction of the drag coefficient is 88% for the highest tested frequency f = 5 and amplitude Δ = 2. However, a significant reduction of 78% appears with the increase of f already for f = 2.5 and Δ = 2. Such a dramatic reduction in the drag coefficient is the consequence of restructuring of the vortex-shedding topology and a markedly different pressure field featured by a shrinking of the low pressure region behind the cylinder, all dictated by the rotary oscillation. Despite the need to expend energy to force cylinder oscillations, the considered drag reduction mechanism seems a feasible practical option for drag control in some applications for Re>104, since the calculated power expenditure for cylinder oscillation under realistic scenarios is several times smaller than the power saved by the drag reduction.",
keywords = "flow control, turbulence modelling, wakes, FORCE, CIRCULAR-CYLINDER, DRAG REDUCTION, CROSS-FLOW, LAMINAR REGIME, WAKE, SUPPRESSION",
author = "E. Palkin and M. Had{\v z}iabdi{\'c} and R. Mullyadzhanov and K. Hanjali{\'c}",
note = "Publisher Copyright: {\textcopyright} 2018 Cambridge University Press.",
year = "2018",
month = sep,
day = "18",
doi = "10.1017/jfm.2018.639",
language = "English",
volume = "855",
pages = "236--266",
journal = "Journal of Fluid Mechanics",
issn = "0022-1120",
publisher = "Cambridge University Press",

}

RIS

TY - JOUR

T1 - Control of flow around a cylinder by rotary oscillations at a high subcritical Reynolds number

AU - Palkin, E.

AU - Hadžiabdić, M.

AU - Mullyadzhanov, R.

AU - Hanjalić, K.

N1 - Publisher Copyright: © 2018 Cambridge University Press.

PY - 2018/9/18

Y1 - 2018/9/18

N2 - We report on a numerical study of the vortex structure modifications and drag reduction in a flow over a rotationally oscillating circular cylinder at a high subcritical Reynolds number, Re=1:4×105. Considered are eight forcing frequencies f=fe/f0=0:5, 1, 1.5, 2, 2.5, 3, 4, 5 and three forcing amplitudes Δe=ΔD/2U∞ =1, 2, 3, non-dimensionalized with f0, which is the natural vortex-shedding frequency without forcing, U∞ the free-stream velocity, D the diameter of the cylinder. In order to perform a parametric study of a large number of cases (24 in total) with affordable computational resources, the three-dimensional unsteady computations were performed using a wall-integrated (WIN) second-moment (Reynolds-stress) Reynolds-averaged Navier-Stokes (RANS) turbulence closure, verified and validated by a dynamic large-eddy simulations (LES) for selected cases (f = 2.5,Δ = 2 and f = 4, Δ = 2), as well as by the earlier LES and experiments of the flow over a stagnant cylinder at the same Re number described in Palkin et al. (Flow Turbul. Combust., vol. 97 (4), 2016, pp. 1017-1046). The drag reduction was detected at frequencies equal to and larger than f =2.5, while no reduction was observed for the cylinder subjected to oscillations with the natural frequency, even with very different values of the rotation amplitude. The maximum reduction of the drag coefficient is 88% for the highest tested frequency f = 5 and amplitude Δ = 2. However, a significant reduction of 78% appears with the increase of f already for f = 2.5 and Δ = 2. Such a dramatic reduction in the drag coefficient is the consequence of restructuring of the vortex-shedding topology and a markedly different pressure field featured by a shrinking of the low pressure region behind the cylinder, all dictated by the rotary oscillation. Despite the need to expend energy to force cylinder oscillations, the considered drag reduction mechanism seems a feasible practical option for drag control in some applications for Re>104, since the calculated power expenditure for cylinder oscillation under realistic scenarios is several times smaller than the power saved by the drag reduction.

AB - We report on a numerical study of the vortex structure modifications and drag reduction in a flow over a rotationally oscillating circular cylinder at a high subcritical Reynolds number, Re=1:4×105. Considered are eight forcing frequencies f=fe/f0=0:5, 1, 1.5, 2, 2.5, 3, 4, 5 and three forcing amplitudes Δe=ΔD/2U∞ =1, 2, 3, non-dimensionalized with f0, which is the natural vortex-shedding frequency without forcing, U∞ the free-stream velocity, D the diameter of the cylinder. In order to perform a parametric study of a large number of cases (24 in total) with affordable computational resources, the three-dimensional unsteady computations were performed using a wall-integrated (WIN) second-moment (Reynolds-stress) Reynolds-averaged Navier-Stokes (RANS) turbulence closure, verified and validated by a dynamic large-eddy simulations (LES) for selected cases (f = 2.5,Δ = 2 and f = 4, Δ = 2), as well as by the earlier LES and experiments of the flow over a stagnant cylinder at the same Re number described in Palkin et al. (Flow Turbul. Combust., vol. 97 (4), 2016, pp. 1017-1046). The drag reduction was detected at frequencies equal to and larger than f =2.5, while no reduction was observed for the cylinder subjected to oscillations with the natural frequency, even with very different values of the rotation amplitude. The maximum reduction of the drag coefficient is 88% for the highest tested frequency f = 5 and amplitude Δ = 2. However, a significant reduction of 78% appears with the increase of f already for f = 2.5 and Δ = 2. Such a dramatic reduction in the drag coefficient is the consequence of restructuring of the vortex-shedding topology and a markedly different pressure field featured by a shrinking of the low pressure region behind the cylinder, all dictated by the rotary oscillation. Despite the need to expend energy to force cylinder oscillations, the considered drag reduction mechanism seems a feasible practical option for drag control in some applications for Re>104, since the calculated power expenditure for cylinder oscillation under realistic scenarios is several times smaller than the power saved by the drag reduction.

KW - flow control

KW - turbulence modelling

KW - wakes

KW - FORCE

KW - CIRCULAR-CYLINDER

KW - DRAG REDUCTION

KW - CROSS-FLOW

KW - LAMINAR REGIME

KW - WAKE

KW - SUPPRESSION

UR - http://www.scopus.com/inward/record.url?scp=85053511584&partnerID=8YFLogxK

U2 - 10.1017/jfm.2018.639

DO - 10.1017/jfm.2018.639

M3 - Article

AN - SCOPUS:85053511584

VL - 855

SP - 236

EP - 266

JO - Journal of Fluid Mechanics

JF - Journal of Fluid Mechanics

SN - 0022-1120

ER -

ID: 16632039