Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
CONSTRUCTING SEGMENTS OF QUADRATIC LENGTH IN Spec(Tn) THROUGH SEGMENTS OF LINEAR LENGTH. / Kravchuk, A. V.
в: Siberian Electronic Mathematical Reports, Том 21, № 2, 01.01.2024, стр. 927-939.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - CONSTRUCTING SEGMENTS OF QUADRATIC LENGTH IN Spec(Tn) THROUGH SEGMENTS OF LINEAR LENGTH
AU - Kravchuk, A. V.
N1 - The work is supported by the Mathematical Center in Akademgorodok, under agreement No. 075-15-2022-281 with the Ministry of Science and High Education of the Russian Federation.
PY - 2024/1/1
Y1 - 2024/1/1
N2 - A Transposition graph Tn is defined as a Cayley graph over the symmetric group Symn generated by all transpositions. It is known that the spectrum of Tn consists of integers, but it is not known exactly how these numbers are distributed. In this paper we prove that integers from the segment [−n, n] lie in the spectrum of Tn for any n ≥ 31. Using this fact we also prove the main result of this paper that a segment of quadratic length with respect to n lies in the spectrum of Tn.
AB - A Transposition graph Tn is defined as a Cayley graph over the symmetric group Symn generated by all transpositions. It is known that the spectrum of Tn consists of integers, but it is not known exactly how these numbers are distributed. In this paper we prove that integers from the segment [−n, n] lie in the spectrum of Tn for any n ≥ 31. Using this fact we also prove the main result of this paper that a segment of quadratic length with respect to n lies in the spectrum of Tn.
KW - Transposition graph
KW - integral graph
KW - spectrum
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85212338449&origin=inward&txGid=f7b8aadd0bd756f5cffdbac8697d4c9f
UR - https://www.mendeley.com/catalogue/dd2a8f59-57e5-3bed-8357-526ea02fde92/
U2 - 10.33048/semi.2024.21.061
DO - 10.33048/semi.2024.21.061
M3 - Article
VL - 21
SP - 927
EP - 939
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
IS - 2
ER -
ID: 61294441