Standard

Conformal Envelopes of Novikov–Poisson Algebras. / Kolesnikov, P. S.; Nesterenko, A. A.

в: Siberian Mathematical Journal, Том 64, № 3, 05.2023, стр. 598-610.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kolesnikov, PS & Nesterenko, AA 2023, 'Conformal Envelopes of Novikov–Poisson Algebras', Siberian Mathematical Journal, Том. 64, № 3, стр. 598-610. https://doi.org/10.1134/S0037446623030084

APA

Kolesnikov, P. S., & Nesterenko, A. A. (2023). Conformal Envelopes of Novikov–Poisson Algebras. Siberian Mathematical Journal, 64(3), 598-610. https://doi.org/10.1134/S0037446623030084

Vancouver

Kolesnikov PS, Nesterenko AA. Conformal Envelopes of Novikov–Poisson Algebras. Siberian Mathematical Journal. 2023 май;64(3):598-610. doi: 10.1134/S0037446623030084

Author

Kolesnikov, P. S. ; Nesterenko, A. A. / Conformal Envelopes of Novikov–Poisson Algebras. в: Siberian Mathematical Journal. 2023 ; Том 64, № 3. стр. 598-610.

BibTeX

@article{86aed3aae013466497947519c8431297,
title = "Conformal Envelopes of Novikov–Poisson Algebras",
abstract = "We prove that every Novikov–Poisson algebra over a field of zero characteristiccan be embedded into a commutative conformal algebra with a derivation.As a corollary, we show that every commutator Gelfand–Dorfman algebraobtained from a Novikov–Poisson algebra is special, i.e., embeddable intoa differential Poisson algebra.",
keywords = "512.554, Gelfand–Dorfman algebra, Novikov–Poisson algebra, Poisson algebra, conformal algebra",
author = "Kolesnikov, {P. S.} and Nesterenko, {A. A.}",
note = "The work was supported by the RAS Fundamental Research program (Project FWNF–2022–0002). Публикация для корректировки.",
year = "2023",
month = may,
doi = "10.1134/S0037446623030084",
language = "English",
volume = "64",
pages = "598--610",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "3",

}

RIS

TY - JOUR

T1 - Conformal Envelopes of Novikov–Poisson Algebras

AU - Kolesnikov, P. S.

AU - Nesterenko, A. A.

N1 - The work was supported by the RAS Fundamental Research program (Project FWNF–2022–0002). Публикация для корректировки.

PY - 2023/5

Y1 - 2023/5

N2 - We prove that every Novikov–Poisson algebra over a field of zero characteristiccan be embedded into a commutative conformal algebra with a derivation.As a corollary, we show that every commutator Gelfand–Dorfman algebraobtained from a Novikov–Poisson algebra is special, i.e., embeddable intoa differential Poisson algebra.

AB - We prove that every Novikov–Poisson algebra over a field of zero characteristiccan be embedded into a commutative conformal algebra with a derivation.As a corollary, we show that every commutator Gelfand–Dorfman algebraobtained from a Novikov–Poisson algebra is special, i.e., embeddable intoa differential Poisson algebra.

KW - 512.554

KW - Gelfand–Dorfman algebra

KW - Novikov–Poisson algebra

KW - Poisson algebra

KW - conformal algebra

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85160241845&origin=inward&txGid=b3f7904b072174862073ab3ef69d8205

UR - https://www.mendeley.com/catalogue/cf0c5801-4b92-3dae-907b-1fab58a8339a/

U2 - 10.1134/S0037446623030084

DO - 10.1134/S0037446623030084

M3 - Article

VL - 64

SP - 598

EP - 610

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 3

ER -

ID: 59251192