Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Computable Numberings of Families of Infinite Sets. / Dorzhieva, M. V.
в: Algebra and Logic, Том 58, № 3, 01.07.2019, стр. 224-231.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Computable Numberings of Families of Infinite Sets
AU - Dorzhieva, M. V.
PY - 2019/7/1
Y1 - 2019/7/1
N2 - We state the following results: the family of all infinite computably enumerable sets has no computable numbering; the family of all infinite Π11 sets has no Π11 -computable numbering; the family of all infinite Σ21 sets has no Σ21 -computable numbering. For k > 2, the existence of a Σk1 -computable numbering for the family of all infinite Σk1 sets leads to the inconsistency of ZF.
AB - We state the following results: the family of all infinite computably enumerable sets has no computable numbering; the family of all infinite Π11 sets has no Π11 -computable numbering; the family of all infinite Σ21 sets has no Σ21 -computable numbering. For k > 2, the existence of a Σk1 -computable numbering for the family of all infinite Σk1 sets leads to the inconsistency of ZF.
KW - analytical hierarchy
KW - computability
KW - computable numberings
KW - Friedberg numbering
KW - Gödel’s axiom of constructibility
KW - Godel's axiom of constructibility
KW - AXIOM
UR - http://www.scopus.com/inward/record.url?scp=85074822859&partnerID=8YFLogxK
U2 - 10.1007/s10469-019-09540-4
DO - 10.1007/s10469-019-09540-4
M3 - Article
AN - SCOPUS:85074822859
VL - 58
SP - 224
EP - 231
JO - Algebra and Logic
JF - Algebra and Logic
SN - 0002-5232
IS - 3
ER -
ID: 22338498