Standard

Component-based approach to automatic poetry generation. / Мосолова, Анна Владимировна; Бондаренко, Иван ; Гусев, Петр Андреевич и др.

Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference “Dialogue” (2019). ред. / Владимир Павлович Селегей. Том 18 Москва, 2019.

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаяРецензирование

Harvard

Мосолова, АВ, Бондаренко, И, Гусев, ПА, Малышева, АД, Водолазский, ДИ & Боровикова, МН 2019, Component-based approach to automatic poetry generation. в ВП Селегей (ред.), Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference “Dialogue” (2019). Том. 18, Москва. <http://www.dialog-21.ru/media/4655/camerareadysubmission-94.docx>

APA

Мосолова, А. В., Бондаренко, И., Гусев, П. А., Малышева, А. Д., Водолазский, Д. И., & Боровикова, М. Н. (2019). Component-based approach to automatic poetry generation. в В. П. Селегей (Ред.), Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference “Dialogue” (2019) (Том 18). http://www.dialog-21.ru/media/4655/camerareadysubmission-94.docx

Vancouver

Мосолова АВ, Бондаренко И, Гусев ПА, Малышева АД, Водолазский ДИ, Боровикова МН. Component-based approach to automatic poetry generation. в Селегей ВП, Редактор, Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference “Dialogue” (2019). Том 18. Москва. 2019

Author

Мосолова, Анна Владимировна ; Бондаренко, Иван ; Гусев, Петр Андреевич и др. / Component-based approach to automatic poetry generation. Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference “Dialogue” (2019). Редактор / Владимир Павлович Селегей. Том 18 Москва, 2019.

BibTeX

@inproceedings{6dc937be0b774447bc92d7caaeedca3c,
title = "Component-based approach to automatic poetry generation",
abstract = "This paper describes two approaches to generating poetic texts on a given topic, one of which we used while participating in ClassicAI, a contest in developing poetry generators in a specific style held by Sberbank. In the first one, we used topic modeling for extracting keywords that a certain topic is characteristic of, applied a text data augmenter to replace parts of the source of the poetry style with thematic words, and then applied a poetic consistency checker to maintain rhyme and rhythm in the output text. In the second one, we used semantic search for obtaining odd lines for the output texts and then phonetic search that selected lines similar in rhyme and rhythm to the given lines and used them as even ones. In this paper, we describe both of our approaches, analyze their benefits and weak spots, provide information on the results of the competition and suggest possible improvements",
author = "Мосолова, {Анна Владимировна} and Иван Бондаренко and Гусев, {Петр Андреевич} and Малышева, {Анастасия Дмитриевна} and Водолазский, {Даниил Иванович} and Боровикова, {Мария Николаевна}",
year = "2019",
language = "English",
volume = "18",
editor = "Селегей, {Владимир Павлович}",
booktitle = "Computational Linguistics and Intellectual Technologies",

}

RIS

TY - GEN

T1 - Component-based approach to automatic poetry generation

AU - Мосолова, Анна Владимировна

AU - Бондаренко, Иван

AU - Гусев, Петр Андреевич

AU - Малышева, Анастасия Дмитриевна

AU - Водолазский, Даниил Иванович

AU - Боровикова, Мария Николаевна

PY - 2019

Y1 - 2019

N2 - This paper describes two approaches to generating poetic texts on a given topic, one of which we used while participating in ClassicAI, a contest in developing poetry generators in a specific style held by Sberbank. In the first one, we used topic modeling for extracting keywords that a certain topic is characteristic of, applied a text data augmenter to replace parts of the source of the poetry style with thematic words, and then applied a poetic consistency checker to maintain rhyme and rhythm in the output text. In the second one, we used semantic search for obtaining odd lines for the output texts and then phonetic search that selected lines similar in rhyme and rhythm to the given lines and used them as even ones. In this paper, we describe both of our approaches, analyze their benefits and weak spots, provide information on the results of the competition and suggest possible improvements

AB - This paper describes two approaches to generating poetic texts on a given topic, one of which we used while participating in ClassicAI, a contest in developing poetry generators in a specific style held by Sberbank. In the first one, we used topic modeling for extracting keywords that a certain topic is characteristic of, applied a text data augmenter to replace parts of the source of the poetry style with thematic words, and then applied a poetic consistency checker to maintain rhyme and rhythm in the output text. In the second one, we used semantic search for obtaining odd lines for the output texts and then phonetic search that selected lines similar in rhyme and rhythm to the given lines and used them as even ones. In this paper, we describe both of our approaches, analyze their benefits and weak spots, provide information on the results of the competition and suggest possible improvements

M3 - Conference contribution

VL - 18

BT - Computational Linguistics and Intellectual Technologies

A2 - Селегей, Владимир Павлович

CY - Москва

ER -

ID: 23057322