Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Complex approach towards algoritm learning for anaphora resolution in Russian language. / Gureenkova, O. A.; Batura, T. V.; Kozlova, A. A. и др.
в: Komp'juternaja Lingvistika i Intellektual'nye Tehnologii, Том 1, № 16, 2017, стр. 89-97.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Complex approach towards algoritm learning for anaphora resolution in Russian language
AU - Gureenkova, O. A.
AU - Batura, T. V.
AU - Kozlova, A. A.
AU - Svischev, A. N.
PY - 2017
Y1 - 2017
N2 - The paper considers applying of ensemble algorithm based on rules and machine learning for anaphora resolution in Russian language. Ensemble presents combination of formal rules, a machine learning algorithm Extra Trees and an algorithm for working with imbalanced learning sets Balance Cascade. Complexity of the approach lies in generation of complex features from rules and vectorization of syntactic context, with context data obtained from algorithms mystem (Yandex), SyntaxNet (Google) and Word2Vec.
AB - The paper considers applying of ensemble algorithm based on rules and machine learning for anaphora resolution in Russian language. Ensemble presents combination of formal rules, a machine learning algorithm Extra Trees and an algorithm for working with imbalanced learning sets Balance Cascade. Complexity of the approach lies in generation of complex features from rules and vectorization of syntactic context, with context data obtained from algorithms mystem (Yandex), SyntaxNet (Google) and Word2Vec.
KW - Anaphora
KW - Antecedent
KW - Balance Cascade
KW - Cataphora
KW - Extra Trees
KW - Imbalanced set
KW - Machine learning
KW - Random forest
KW - SyntaxNet
KW - Word2Vec
UR - http://www.scopus.com/inward/record.url?scp=85021792831&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85021792831
VL - 1
SP - 89
EP - 97
JO - Компьютерная лингвистика и интеллектуальные технологии
JF - Компьютерная лингвистика и интеллектуальные технологии
SN - 2221-7932
IS - 16
ER -
ID: 9076636