Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Comparison of Parameter Identification Methods for Linear Dynamic Systems Under Mixed Noise. / Lomov, A. A.; Fedoseev, A. V.
в: Journal of Mathematical Sciences (United States), Том 253, № 3, 03.2021, стр. 407-418.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Comparison of Parameter Identification Methods for Linear Dynamic Systems Under Mixed Noise
AU - Lomov, A. A.
AU - Fedoseev, A. V.
N1 - Publisher Copyright: © 2021, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/3
Y1 - 2021/3
N2 - We study the possibility of comparing methods with the atypical noise conditions by examing three parameter identification methods and using the sensitivity theory for local expansions of objective functions. The theoretical results are confirmed by numerical experiments on the equations of longitudinal motion of an aircraft, where the parameters are identified by the linear least-squares method, the method of instrumental variables in a frequency domain, and the variational method. The mixed noise (an additive noise in observations and a noise in the residual of the equation) is taken for perturbations.
AB - We study the possibility of comparing methods with the atypical noise conditions by examing three parameter identification methods and using the sensitivity theory for local expansions of objective functions. The theoretical results are confirmed by numerical experiments on the equations of longitudinal motion of an aircraft, where the parameters are identified by the linear least-squares method, the method of instrumental variables in a frequency domain, and the variational method. The mixed noise (an additive noise in observations and a noise in the residual of the equation) is taken for perturbations.
UR - http://www.scopus.com/inward/record.url?scp=85100672603&partnerID=8YFLogxK
U2 - 10.1007/s10958-021-05238-0
DO - 10.1007/s10958-021-05238-0
M3 - Article
AN - SCOPUS:85100672603
VL - 253
SP - 407
EP - 418
JO - Journal of Mathematical Sciences (United States)
JF - Journal of Mathematical Sciences (United States)
SN - 1072-3374
IS - 3
ER -
ID: 27876382