Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Characterization of some classes of isometric mappings that preserve self-duality of generalized bent function. / Куценко, Александр Владимирович.
в: Прикладная дискретная математика, № 69, 2, 2025, стр. 18-36.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Characterization of some classes of isometric mappings that preserve self-duality of generalized bent function
AU - Куценко, Александр Владимирович
N1 - Куценко, А. В. Описание некоторых классов изометричных отображений, сохраняющих самодуальность обобщённой бент-функции / А. В. Куценко // Прикладная дискретная математика. – 2025. – № 69. – С. 18-36. – DOI 10.17223/20710410/69/2. – EDN NDCPTF. Работа выполнена при поддержке Математического центра в Академгородке, соглашение с Министерством науки и высшего образования РФ № 075-15-2025-349.
PY - 2025
Y1 - 2025
N2 - A generalized Boolean function with flat Walsh - Hadamard spectrum is called generalized bent (gbent) function. Gbent function that coincides with its dual bent function is called self-dual. In this paper, we study isometric mappings of the set of all generalized Boolean functions into itself that preserve self-duality. A new mapping that preserves the self-duality of a gbent function is proposed. We introduce the concept of the action of an unitary operator on the set of generalized Boolean functions in n variables, represented by their characteristic vectors. Within the considered class of unitary operators, all mappings that preserve self-duality are described. A generalized form of isometric mapping corresponding to the complex conjugation of the characteristic vector is investigated.
AB - A generalized Boolean function with flat Walsh - Hadamard spectrum is called generalized bent (gbent) function. Gbent function that coincides with its dual bent function is called self-dual. In this paper, we study isometric mappings of the set of all generalized Boolean functions into itself that preserve self-duality. A new mapping that preserves the self-duality of a gbent function is proposed. We introduce the concept of the action of an unitary operator on the set of generalized Boolean functions in n variables, represented by their characteristic vectors. Within the considered class of unitary operators, all mappings that preserve self-duality are described. A generalized form of isometric mapping corresponding to the complex conjugation of the characteristic vector is investigated.
KW - ОБОБЩЁННАЯ БЕНТ-ФУНКЦИЯ
KW - САМОДУАЛЪНАЯ БЕНТ-ФУНКЦИЯ
KW - ИЗОМЕТРИЧНОЕ ОТОБРАЖЕНИЕ
KW - GENERALIZED BOOLEAN FUNCTION
KW - SELF-DUAL BENT FINCTION
KW - ISOMETRIC MAPPING
UR - https://www.scopus.com/pages/publications/105024448278
UR - https://elibrary.ru/item.asp?id=83025877
UR - https://www.mendeley.com/catalogue/92135981-d73e-301e-9931-33f5f03a4bc4/
U2 - 10.17223/20710410/69/2
DO - 10.17223/20710410/69/2
M3 - Article
SP - 18
EP - 36
JO - Прикладная дискретная математика
JF - Прикладная дискретная математика
SN - 2071-0410
IS - 69
M1 - 2
ER -
ID: 72669982