Standard

Characterization of polystochastic matrices of order 4 with zero permanent. / Perezhogin, Aleksei L.; Potapov, Vladimir N.; Taranenko, Anna A. и др.

в: Journal of Combinatorial Theory. Series A, Том 215, 106060, 30.04.2025.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Perezhogin, AL, Potapov, VN, Taranenko, AA & Vladimirov, SY 2025, 'Characterization of polystochastic matrices of order 4 with zero permanent', Journal of Combinatorial Theory. Series A, Том. 215, 106060. https://doi.org/10.1016/j.jcta.2025.106060

APA

Perezhogin, A. L., Potapov, V. N., Taranenko, A. A., & Vladimirov, S. Y. (2025). Characterization of polystochastic matrices of order 4 with zero permanent. Journal of Combinatorial Theory. Series A, 215, [106060]. https://doi.org/10.1016/j.jcta.2025.106060

Vancouver

Perezhogin AL, Potapov VN, Taranenko AA, Vladimirov SY. Characterization of polystochastic matrices of order 4 with zero permanent. Journal of Combinatorial Theory. Series A. 2025 апр. 30;215:106060. doi: 10.1016/j.jcta.2025.106060

Author

Perezhogin, Aleksei L. ; Potapov, Vladimir N. ; Taranenko, Anna A. и др. / Characterization of polystochastic matrices of order 4 with zero permanent. в: Journal of Combinatorial Theory. Series A. 2025 ; Том 215.

BibTeX

@article{1b8cb6f33bde49d7806247fbba2443c0,
title = "Characterization of polystochastic matrices of order 4 with zero permanent",
abstract = "A multidimensional nonnegative matrix is called polystochastic if the sum of its entries over each line is equal to 1. The permanent of a multidimensional matrix is the sum of products of entries over all diagonals. We prove that if d is even, then the permanent of a d-dimensional polystochastic matrix of order 4 is positive, and for odd d, we give a complete characterization of d-dimensional polystochastic matrices with zero permanent.",
keywords = "Bitrade, Multidimensional permutation, Permanent of multidimensional matrix, Polystochastic matrix, Unitrade, Bitrade, Multidimensional permutation, Permanent of multidimensional matrix, Polystochastic matrix, Unitrade",
author = "Perezhogin, {Aleksei L.} and Potapov, {Vladimir N.} and Taranenko, {Anna A.} and Vladimirov, {Sergey Yu}",
year = "2025",
month = apr,
day = "30",
doi = "10.1016/j.jcta.2025.106060",
language = "English",
volume = "215",
journal = "Journal of Combinatorial Theory. Series A",
issn = "1096-0899",
publisher = "Elsevier Science Publishing Company, Inc.",

}

RIS

TY - JOUR

T1 - Characterization of polystochastic matrices of order 4 with zero permanent

AU - Perezhogin, Aleksei L.

AU - Potapov, Vladimir N.

AU - Taranenko, Anna A.

AU - Vladimirov, Sergey Yu

PY - 2025/4/30

Y1 - 2025/4/30

N2 - A multidimensional nonnegative matrix is called polystochastic if the sum of its entries over each line is equal to 1. The permanent of a multidimensional matrix is the sum of products of entries over all diagonals. We prove that if d is even, then the permanent of a d-dimensional polystochastic matrix of order 4 is positive, and for odd d, we give a complete characterization of d-dimensional polystochastic matrices with zero permanent.

AB - A multidimensional nonnegative matrix is called polystochastic if the sum of its entries over each line is equal to 1. The permanent of a multidimensional matrix is the sum of products of entries over all diagonals. We prove that if d is even, then the permanent of a d-dimensional polystochastic matrix of order 4 is positive, and for odd d, we give a complete characterization of d-dimensional polystochastic matrices with zero permanent.

KW - Bitrade

KW - Multidimensional permutation

KW - Permanent of multidimensional matrix

KW - Polystochastic matrix

KW - Unitrade

KW - Bitrade

KW - Multidimensional permutation

KW - Permanent of multidimensional matrix

KW - Polystochastic matrix

KW - Unitrade

UR - https://www.mendeley.com/catalogue/52dfaefe-e146-3ebf-9f65-10dabd75d091/

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-105003841097&origin=inward&txGid=98e7ebcac1294aac5b50b57895306bc4

U2 - 10.1016/j.jcta.2025.106060

DO - 10.1016/j.jcta.2025.106060

M3 - Article

VL - 215

JO - Journal of Combinatorial Theory. Series A

JF - Journal of Combinatorial Theory. Series A

SN - 1096-0899

M1 - 106060

ER -

ID: 66119071