Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Characterization of groups E6(3) and 2E6(3) by Gruenberg-Kegel graph. / Khramova, A. P.; Maslova, N.; Panshin, V. V. и др.
в: Сибирские электронные математические известия, Том 18, № 2, 14, 2021, стр. 1651-1656.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Characterization of groups E6(3) and 2E6(3) by Gruenberg-Kegel graph
AU - Khramova, A. P.
AU - Maslova, N.
AU - Panshin, V. V.
AU - Staroletov, A. M.
N1 - Publisher Copyright: © 2021 Khramova A.P., Maslova N.V., Panshin V.V., Staroletov A.M. The work is supported by the Mathematical Center in Akademgorodok under the agreement 075-15-2019-1675 with the Ministry of Science and Higher Education of the Russian Federation
PY - 2021
Y1 - 2021
N2 - The Gruenberg Kegel graph (or the prime graph) Γ(G) of a nite group G is de ned as follows. The vertex set of Γ(G) is the set of all prime divisors of the order of G. Two distinct primes r and s regarded as vertices are adjacent in Γ(G) if and only if there exists an element of order rs in G. Suppose that L =≅ E6(3) or L ≅= 2E6(3). We prove that if G is a nite group such that Γ(G) = Γ(L), then G ≅= L.
AB - The Gruenberg Kegel graph (or the prime graph) Γ(G) of a nite group G is de ned as follows. The vertex set of Γ(G) is the set of all prime divisors of the order of G. Two distinct primes r and s regarded as vertices are adjacent in Γ(G) if and only if there exists an element of order rs in G. Suppose that L =≅ E6(3) or L ≅= 2E6(3). We prove that if G is a nite group such that Γ(G) = Γ(L), then G ≅= L.
KW - finite group
KW - simple group
KW - the Gruenberg-Kegel graph
KW - exceptional group of Lie type E-6
KW - EXCEPTIONAL GROUPS
KW - ELEMENT ORDERS
KW - FINITE-GROUPS
KW - PRIME GRAPH
KW - Finite group
KW - The gruenbergkegel graph
KW - Exceptional group of lie type e6
KW - Simple group
UR - http://www.scopus.com/inward/record.url?scp=85123794632&partnerID=8YFLogxK
UR - https://elibrary.ru/item.asp?id=47669599
U2 - 10.33048/semi.2021.18.124
DO - 10.33048/semi.2021.18.124
M3 - Article
VL - 18
SP - 1651
EP - 1656
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
IS - 2
M1 - 14
ER -
ID: 35408839