Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Centroid Hom-associative Algebras and Centroid Hom-Lie Algebras. / Bai, Yu Xiu; Bokut, Leonid A.; Chen, Yu Qun и др.
в: Acta Mathematica Sinica, English Series, Том 40, № 4, 04.2024, стр. 935-961.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Centroid Hom-associative Algebras and Centroid Hom-Lie Algebras
AU - Bai, Yu Xiu
AU - Bokut, Leonid A.
AU - Chen, Yu Qun
AU - Zhang, Ze Rui
N1 - Yuxiu Bai is supported by the grant of Guangzhou Civil Aviation College (Grant No. 22X0430); L.A. Bokut is supported by the RAS Fundamental Research Program (Grant No. FWNF-2022-0002), Yuqun Chen is supported by the NNSF of China (Grant Nos. 11571121, 12071156); Zerui Zhang is supported by the NNSF of China (Grant No. 12101248) and by the China Postdoctoral Science Foundation (Grant No. 2021M691099). Публикация для корректировки.
PY - 2024/4
Y1 - 2024/4
N2 - In this article, we construct free centroid hom-associative algebras and free centroid hom-Lie algebras. We also construct some other relatively free centroid hom-associative algebras by applying the Gröbner–Shirshov basis theory for (unital) centroid hom-associative algebras. Finally, we prove that the “Poincaré–Birkhoff–Witt theorem” holds for certain type of centroid hom-Lie algebras over a field of characteristic 0, namely, every centroid hom-Lie algebra such that the eigenvectors of the map β linearly generates the whole algebra can be embedded into its universal enveloping centroid hom-associative algebra, and the linear basis of the universal enveloping algebra does not depend on the multiplication table of the centroid hom-Lie algebra under consideration.
AB - In this article, we construct free centroid hom-associative algebras and free centroid hom-Lie algebras. We also construct some other relatively free centroid hom-associative algebras by applying the Gröbner–Shirshov basis theory for (unital) centroid hom-associative algebras. Finally, we prove that the “Poincaré–Birkhoff–Witt theorem” holds for certain type of centroid hom-Lie algebras over a field of characteristic 0, namely, every centroid hom-Lie algebra such that the eigenvectors of the map β linearly generates the whole algebra can be embedded into its universal enveloping centroid hom-associative algebra, and the linear basis of the universal enveloping algebra does not depend on the multiplication table of the centroid hom-Lie algebra under consideration.
KW - 13P10
KW - 17A01
KW - 17A30
KW - 17A50
KW - 17B35
KW - Centroid hom-Lie algebra
KW - Gröbner–Shirshov basis
KW - centroid hom-associative algebra
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85174170862&origin=inward&txGid=11f355839a4c8824f92dcf721c07fa43
UR - https://www.mendeley.com/catalogue/e9f9724f-d74c-3b71-b3b0-8ef497f26d5f/
U2 - 10.1007/s10114-023-2399-9
DO - 10.1007/s10114-023-2399-9
M3 - Article
VL - 40
SP - 935
EP - 961
JO - Acta Mathematica Sinica, English Series
JF - Acta Mathematica Sinica, English Series
SN - 1439-7617
IS - 4
ER -
ID: 59180826