Standard

Calibration of the CMS hadron calorimeters using proton-proton collision data at s = 13 TeV. / The CMS collaboration.

в: Journal of Instrumentation, Том 15, № 5, P05002, 05.2020.

Результаты исследований: Научные публикации в периодических изданияхобзорная статьяРецензирование

Harvard

APA

Vancouver

The CMS collaboration. Calibration of the CMS hadron calorimeters using proton-proton collision data at s = 13 TeV. Journal of Instrumentation. 2020 май;15(5):P05002. doi: 10.1088/1748-0221/15/05/P05002

Author

The CMS collaboration. / Calibration of the CMS hadron calorimeters using proton-proton collision data at s = 13 TeV. в: Journal of Instrumentation. 2020 ; Том 15, № 5.

BibTeX

@article{fae904639004440da63ee384f58f8a63,
title = "Calibration of the CMS hadron calorimeters using proton-proton collision data at s = 13 TeV",
abstract = "Methods are presented for calibrating the hadron calorimeter system of the CMS detector at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover pseudorapidities |η| < 3 and are positioned inside the solenoidal magnet. An outer calorimeter, outside the magnet coil, covers |η| < 1.26, and a steel and quartz-fiber Cherenkov forward calorimeter extends the coverage to |η| < 5.19. The initial calibration of the calorimeters was based on results from test beams, augmented with the use of radioactive sources and lasers. The calibration was improved substantially using proton-proton collision data collected at s = 7, 8, and 13 TeV, as well as cosmic ray muon data collected during the periods when the LHC beams were not present. The present calibration is performed using the 13 TeV data collected during 2016 corresponding to an integrated luminosity of 35.9 fb-1. The intercalibration of channels exploits the approximate uniformity of energy collection over the azimuthal angle. The absolute energy scale of the central and endcap calorimeters is set using isolated charged hadrons. The energy scale for the electromagnetic portion of the forward calorimeters is set using Z→ ee data. The energy scale of the outer calorimeters has been determined with test beam data and is confirmed through data with high transverse momentum jets. In this paper, we present the details of the calibration methods and accuracy.",
keywords = "Calorimeters, Performance of High Energy Physics Detectors, DESIGN, PERFORMANCE, READOUT",
author = "{The CMS collaboration} and Sirunyan, {A. M.} and A. Tumasyan and W. Adam and F. Ambrogi and T. Bergauer and J. Brandstetter and M. Dragicevic and J. Er{\"o} and {Del Valle}, {A. Escalante} and M. Flechl and R. Fr{\"u}hwirth and M. Jeitler and N. Krammer and I. Kratschmer and D. Liko and T. Madlener and I. Mikulec and N. Rad and J. Schieck and R. Sch{\"o}fbeck and M. Spanring and D. Spitzbart and W. Waltenberger and Wulz, {C. E.} and M. Zarucki and V. Chekhovsky and A. Litomin and V. Mossolov and Darwish, {M. R.} and {De Wolf}, {E. A.} and {Di Croce}, D. and X. Janssen and A. Lelek and M. Pieters and Sfar, {H. Rejeb} and {Van Haevermaet}, H. and {Van Mechelen}, {P. V.} and {Van Putte}, S. and {Van Remortel}, N. and F. Blekman and Bols, {E. S.} and Chhibra, {S. S.} and J. D'Hondt and {De Clercq}, J. and D. Lontkovskyi and A. Barnyakov and V. Blinov and T. Dimova and L. Kardapoltsev and Y. Skovpen",
note = "Publisher Copyright: {\textcopyright} 2020 CERN for the benefit of the CMS collaboration.. Publisher Copyright: {\textcopyright} 2020 CERN for the benefit of the CMS collaboration..",
year = "2020",
month = may,
doi = "10.1088/1748-0221/15/05/P05002",
language = "English",
volume = "15",
journal = "Journal of Instrumentation",
issn = "1748-0221",
publisher = "IOP Publishing Ltd.",
number = "5",

}

RIS

TY - JOUR

T1 - Calibration of the CMS hadron calorimeters using proton-proton collision data at s = 13 TeV

AU - The CMS collaboration

AU - Sirunyan, A. M.

AU - Tumasyan, A.

AU - Adam, W.

AU - Ambrogi, F.

AU - Bergauer, T.

AU - Brandstetter, J.

AU - Dragicevic, M.

AU - Erö, J.

AU - Del Valle, A. Escalante

AU - Flechl, M.

AU - Frühwirth, R.

AU - Jeitler, M.

AU - Krammer, N.

AU - Kratschmer, I.

AU - Liko, D.

AU - Madlener, T.

AU - Mikulec, I.

AU - Rad, N.

AU - Schieck, J.

AU - Schöfbeck, R.

AU - Spanring, M.

AU - Spitzbart, D.

AU - Waltenberger, W.

AU - Wulz, C. E.

AU - Zarucki, M.

AU - Chekhovsky, V.

AU - Litomin, A.

AU - Mossolov, V.

AU - Darwish, M. R.

AU - De Wolf, E. A.

AU - Di Croce, D.

AU - Janssen, X.

AU - Lelek, A.

AU - Pieters, M.

AU - Sfar, H. Rejeb

AU - Van Haevermaet, H.

AU - Van Mechelen, P. V.

AU - Van Putte, S.

AU - Van Remortel, N.

AU - Blekman, F.

AU - Bols, E. S.

AU - Chhibra, S. S.

AU - D'Hondt, J.

AU - De Clercq, J.

AU - Lontkovskyi, D.

AU - Barnyakov, A.

AU - Blinov, V.

AU - Dimova, T.

AU - Kardapoltsev, L.

AU - Skovpen, Y.

N1 - Publisher Copyright: © 2020 CERN for the benefit of the CMS collaboration.. Publisher Copyright: © 2020 CERN for the benefit of the CMS collaboration..

PY - 2020/5

Y1 - 2020/5

N2 - Methods are presented for calibrating the hadron calorimeter system of the CMS detector at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover pseudorapidities |η| < 3 and are positioned inside the solenoidal magnet. An outer calorimeter, outside the magnet coil, covers |η| < 1.26, and a steel and quartz-fiber Cherenkov forward calorimeter extends the coverage to |η| < 5.19. The initial calibration of the calorimeters was based on results from test beams, augmented with the use of radioactive sources and lasers. The calibration was improved substantially using proton-proton collision data collected at s = 7, 8, and 13 TeV, as well as cosmic ray muon data collected during the periods when the LHC beams were not present. The present calibration is performed using the 13 TeV data collected during 2016 corresponding to an integrated luminosity of 35.9 fb-1. The intercalibration of channels exploits the approximate uniformity of energy collection over the azimuthal angle. The absolute energy scale of the central and endcap calorimeters is set using isolated charged hadrons. The energy scale for the electromagnetic portion of the forward calorimeters is set using Z→ ee data. The energy scale of the outer calorimeters has been determined with test beam data and is confirmed through data with high transverse momentum jets. In this paper, we present the details of the calibration methods and accuracy.

AB - Methods are presented for calibrating the hadron calorimeter system of the CMS detector at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover pseudorapidities |η| < 3 and are positioned inside the solenoidal magnet. An outer calorimeter, outside the magnet coil, covers |η| < 1.26, and a steel and quartz-fiber Cherenkov forward calorimeter extends the coverage to |η| < 5.19. The initial calibration of the calorimeters was based on results from test beams, augmented with the use of radioactive sources and lasers. The calibration was improved substantially using proton-proton collision data collected at s = 7, 8, and 13 TeV, as well as cosmic ray muon data collected during the periods when the LHC beams were not present. The present calibration is performed using the 13 TeV data collected during 2016 corresponding to an integrated luminosity of 35.9 fb-1. The intercalibration of channels exploits the approximate uniformity of energy collection over the azimuthal angle. The absolute energy scale of the central and endcap calorimeters is set using isolated charged hadrons. The energy scale for the electromagnetic portion of the forward calorimeters is set using Z→ ee data. The energy scale of the outer calorimeters has been determined with test beam data and is confirmed through data with high transverse momentum jets. In this paper, we present the details of the calibration methods and accuracy.

KW - Calorimeters

KW - Performance of High Energy Physics Detectors

KW - DESIGN

KW - PERFORMANCE

KW - READOUT

UR - http://www.scopus.com/inward/record.url?scp=85086015865&partnerID=8YFLogxK

U2 - 10.1088/1748-0221/15/05/P05002

DO - 10.1088/1748-0221/15/05/P05002

M3 - Review article

AN - SCOPUS:85086015865

VL - 15

JO - Journal of Instrumentation

JF - Journal of Instrumentation

SN - 1748-0221

IS - 5

M1 - P05002

ER -

ID: 24520301