Standard

Burde’s series of simple pre-Lie algebras. / Gubarev, Vsevolod.

в: Sao Paulo Journal of Mathematical Sciences, 2023.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Gubarev V. Burde’s series of simple pre-Lie algebras. Sao Paulo Journal of Mathematical Sciences. 2023. doi: 10.1007/s40863-023-00364-w

Author

Gubarev, Vsevolod. / Burde’s series of simple pre-Lie algebras. в: Sao Paulo Journal of Mathematical Sciences. 2023.

BibTeX

@article{5d32dc1b22e04d5daa096e95731a9c23,
title = "Burde{\textquoteright}s series of simple pre-Lie algebras",
abstract = "We describe automorphisms, derivations, and Rota–Baxter operators on the series of simple pre-Lie algebras found by D. Burde in 1998.",
keywords = "Automorphism, Derivation, Pre-Lie algebra, Rota–Baxter operator",
author = "Vsevolod Gubarev",
note = "The author is grateful to Mikhail Pirozhkov, with whom we studied automorphisms and derivations of . Th author is also grateful to the anonymous reviewer. The research is supported by Russian Science Foundation (Project 21-11-00286).",
year = "2023",
doi = "10.1007/s40863-023-00364-w",
language = "English",
journal = "Sao Paulo Journal of Mathematical Sciences",
issn = "2316-9028",
publisher = "Springer International Publishing AG",

}

RIS

TY - JOUR

T1 - Burde’s series of simple pre-Lie algebras

AU - Gubarev, Vsevolod

N1 - The author is grateful to Mikhail Pirozhkov, with whom we studied automorphisms and derivations of . Th author is also grateful to the anonymous reviewer. The research is supported by Russian Science Foundation (Project 21-11-00286).

PY - 2023

Y1 - 2023

N2 - We describe automorphisms, derivations, and Rota–Baxter operators on the series of simple pre-Lie algebras found by D. Burde in 1998.

AB - We describe automorphisms, derivations, and Rota–Baxter operators on the series of simple pre-Lie algebras found by D. Burde in 1998.

KW - Automorphism

KW - Derivation

KW - Pre-Lie algebra

KW - Rota–Baxter operator

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85153336564&origin=inward&txGid=1000c1a0c1350c650a00bec85339930e

UR - https://www.mendeley.com/catalogue/b354a781-a7cf-3564-839a-a522778ab829/

U2 - 10.1007/s40863-023-00364-w

DO - 10.1007/s40863-023-00364-w

M3 - Article

JO - Sao Paulo Journal of Mathematical Sciences

JF - Sao Paulo Journal of Mathematical Sciences

SN - 2316-9028

ER -

ID: 56409547