Standard

Braid groups in handlebodies and corresponding hecke algebras. / Bardakov, Valeriy G.

Algebraic Modeling of Topological and Computational Structures and Applications. ред. / S Lambropoulou; D Theodorou; P Stefaneas; LH Kauffman. Том 219 Springer New York LLC, 2017. стр. 189-203 (Springer Proceedings in Mathematics & Statistics; Том 219).

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаяРецензирование

Harvard

Bardakov, VG 2017, Braid groups in handlebodies and corresponding hecke algebras. в S Lambropoulou, D Theodorou, P Stefaneas & LH Kauffman (ред.), Algebraic Modeling of Topological and Computational Structures and Applications. Том. 219, Springer Proceedings in Mathematics & Statistics, Том. 219, Springer New York LLC, стр. 189-203, THALES Workshop on Algebraic Modeling of Topological and Computational Structures and Applications, AlModTopCom 2015, Athens, Греция, 30.06.2015. https://doi.org/10.1007/978-3-319-68103-0_9

APA

Bardakov, V. G. (2017). Braid groups in handlebodies and corresponding hecke algebras. в S. Lambropoulou, D. Theodorou, P. Stefaneas, & LH. Kauffman (Ред.), Algebraic Modeling of Topological and Computational Structures and Applications (Том 219, стр. 189-203). (Springer Proceedings in Mathematics & Statistics; Том 219). Springer New York LLC. https://doi.org/10.1007/978-3-319-68103-0_9

Vancouver

Bardakov VG. Braid groups in handlebodies and corresponding hecke algebras. в Lambropoulou S, Theodorou D, Stefaneas P, Kauffman LH, Редакторы, Algebraic Modeling of Topological and Computational Structures and Applications. Том 219. Springer New York LLC. 2017. стр. 189-203. (Springer Proceedings in Mathematics & Statistics). doi: 10.1007/978-3-319-68103-0_9

Author

Bardakov, Valeriy G. / Braid groups in handlebodies and corresponding hecke algebras. Algebraic Modeling of Topological and Computational Structures and Applications. Редактор / S Lambropoulou ; D Theodorou ; P Stefaneas ; LH Kauffman. Том 219 Springer New York LLC, 2017. стр. 189-203 (Springer Proceedings in Mathematics & Statistics).

BibTeX

@inproceedings{8b84693a599b416fade21da3f5b95584,
title = "Braid groups in handlebodies and corresponding hecke algebras",
abstract = "In this paper we study the kernel of the homomorphism Bg,n→Bn of the braid group Bg,n in the handlebody Hg to the braid group Bn. We prove that this kernel is semi-direct product of free groups. Also, we introduce an algebra Hg,n(q), which is some analog of the Hecke algebra Hn(q), constructed by the braid group Bn.",
keywords = "KNOT-THEORY",
author = "Bardakov, {Valeriy G.}",
note = "Publisher Copyright: {\textcopyright} Springer International Publishing AG 2017.; THALES Workshop on Algebraic Modeling of Topological and Computational Structures and Applications, AlModTopCom 2015 ; Conference date: 30-06-2015 Through 02-07-2015",
year = "2017",
doi = "10.1007/978-3-319-68103-0_9",
language = "English",
isbn = "9783319681023",
volume = "219",
series = "Springer Proceedings in Mathematics & Statistics",
publisher = "Springer New York LLC",
pages = "189--203",
editor = "S Lambropoulou and D Theodorou and P Stefaneas and LH Kauffman",
booktitle = "Algebraic Modeling of Topological and Computational Structures and Applications",
address = "United States",

}

RIS

TY - GEN

T1 - Braid groups in handlebodies and corresponding hecke algebras

AU - Bardakov, Valeriy G.

N1 - Publisher Copyright: © Springer International Publishing AG 2017.

PY - 2017

Y1 - 2017

N2 - In this paper we study the kernel of the homomorphism Bg,n→Bn of the braid group Bg,n in the handlebody Hg to the braid group Bn. We prove that this kernel is semi-direct product of free groups. Also, we introduce an algebra Hg,n(q), which is some analog of the Hecke algebra Hn(q), constructed by the braid group Bn.

AB - In this paper we study the kernel of the homomorphism Bg,n→Bn of the braid group Bg,n in the handlebody Hg to the braid group Bn. We prove that this kernel is semi-direct product of free groups. Also, we introduce an algebra Hg,n(q), which is some analog of the Hecke algebra Hn(q), constructed by the braid group Bn.

KW - KNOT-THEORY

UR - http://www.scopus.com/inward/record.url?scp=85041290829&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-68103-0_9

DO - 10.1007/978-3-319-68103-0_9

M3 - Conference contribution

AN - SCOPUS:85041290829

SN - 9783319681023

VL - 219

T3 - Springer Proceedings in Mathematics & Statistics

SP - 189

EP - 203

BT - Algebraic Modeling of Topological and Computational Structures and Applications

A2 - Lambropoulou, S

A2 - Theodorou, D

A2 - Stefaneas, P

A2 - Kauffman, LH

PB - Springer New York LLC

T2 - THALES Workshop on Algebraic Modeling of Topological and Computational Structures and Applications, AlModTopCom 2015

Y2 - 30 June 2015 through 2 July 2015

ER -

ID: 9444922