Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Blow-up for a pseudo-parabolic equation with variable nonlinearity depending on (x,t) and negative initial energy. / Antontsev, Stanislav; Kuznetsov, Ivan; Shmarev, Sergey.
в: Nonlinear Analysis: Real World Applications, Том 71, 103837, 06.2023.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Blow-up for a pseudo-parabolic equation with variable nonlinearity depending on (x,t) and negative initial energy
AU - Antontsev, Stanislav
AU - Kuznetsov, Ivan
AU - Shmarev, Sergey
N1 - The authors would like to thank the anonymous referees for their valuable remarks and recommendations that helped improve the earlier version of the paper. The first and second authors are supported by the State Assignment of the Russian Ministry of Science and Higher Education under project no. FWGG-2021-0010 , Russian Federation. The third author acknowledges the support of the Research Grant MCI-21-PID2020-116287GB-I00, Spain.
PY - 2023/6
Y1 - 2023/6
N2 - We study the Dirichlet problem for the pseudo-parabolic equation ut−diva(x,t)|∇u|p(x,t)−2∇u−Δut=b(x,t)|u|q(x,t)−2uin the cylinder QT=Ω×(0,T), where Ω⊂Rd is a sufficiently smooth domain. The positive coefficients a, b and the exponents p≥2, q>2 are given Lipschitz-continuous functions. The functions a, p are monotone decreasing, and b, q are monotone increasing in t. It is shown that there exists a positive constant M=M(|Ω|,sup(x,t)∈QTp(x,t),sup(x,t)∈QTq(x,t)), such if the initial energy is negative, E(0)=∫Ω[Formula presented]|∇u0(x)|p(x,0)−[Formula presented]|u0(x)|q(x,0)dx
AB - We study the Dirichlet problem for the pseudo-parabolic equation ut−diva(x,t)|∇u|p(x,t)−2∇u−Δut=b(x,t)|u|q(x,t)−2uin the cylinder QT=Ω×(0,T), where Ω⊂Rd is a sufficiently smooth domain. The positive coefficients a, b and the exponents p≥2, q>2 are given Lipschitz-continuous functions. The functions a, p are monotone decreasing, and b, q are monotone increasing in t. It is shown that there exists a positive constant M=M(|Ω|,sup(x,t)∈QTp(x,t),sup(x,t)∈QTq(x,t)), such if the initial energy is negative, E(0)=∫Ω[Formula presented]|∇u0(x)|p(x,0)−[Formula presented]|u0(x)|q(x,0)dx
KW - Blow-up
KW - Local solution
KW - Pseudo-parabolic equation
KW - Variable nonlinearity
UR - https://www.scopus.com/inward/record.url?eid=2-s2.0-85146643740&partnerID=40&md5=86bb2dcb0021f460ba7cc1c473a80ecd
UR - https://www.mendeley.com/catalogue/f6207bde-0f3b-3678-9085-b639edc5175a/
U2 - 10.1016/j.nonrwa.2023.103837
DO - 10.1016/j.nonrwa.2023.103837
M3 - Article
VL - 71
JO - Nonlinear Analysis: Real World Applications
JF - Nonlinear Analysis: Real World Applications
SN - 1468-1218
M1 - 103837
ER -
ID: 49082245