Standard

Black holes and topological surgery. / Antoniou, Stathis; Kauffman, Louis H.; Lambropoulou, Sofia.

в: Journal of Knot Theory and its Ramifications, Том 29, № 10, 2042010, 14.09.2020.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Antoniou, S, Kauffman, LH & Lambropoulou, S 2020, 'Black holes and topological surgery', Journal of Knot Theory and its Ramifications, Том. 29, № 10, 2042010. https://doi.org/10.1142/S0218216520420109

APA

Antoniou, S., Kauffman, L. H., & Lambropoulou, S. (2020). Black holes and topological surgery. Journal of Knot Theory and its Ramifications, 29(10), [2042010]. https://doi.org/10.1142/S0218216520420109

Vancouver

Antoniou S, Kauffman LH, Lambropoulou S. Black holes and topological surgery. Journal of Knot Theory and its Ramifications. 2020 сент. 14;29(10):2042010. doi: 10.1142/S0218216520420109

Author

Antoniou, Stathis ; Kauffman, Louis H. ; Lambropoulou, Sofia. / Black holes and topological surgery. в: Journal of Knot Theory and its Ramifications. 2020 ; Том 29, № 10.

BibTeX

@article{861c2699f3a04cc085b1f136e4d7ec9a,
title = "Black holes and topological surgery",
abstract = "We directly connect topological changes that can occur in mathematical three-space via surgery, with black hole formation, the formation of wormholes and new generalizations of these phenomena. This work widens the bridge between topology and natural sciences and creates a new platform for exploring geometrical physics.",
keywords = "black holes, cosmic string, cosmology, dynamics, Einstein-Rosen bridge, entanglement, ER = EPR, geometric topology, handle, knot theory, mathematical model, Morse theory, natural phenomena, natural processes, Poincar{\'e} dodecahedral space, quantum cosmology, quantum gravity, reconnection, three-manifold, three-space, three-sphere, topological process, Topological surgery, topology, wormholes",
author = "Stathis Antoniou and Kauffman, {Louis H.} and Sofia Lambropoulou",
note = "Publisher Copyright: {\textcopyright} 2020 World Scientific Publishing Company. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = sep,
day = "14",
doi = "10.1142/S0218216520420109",
language = "English",
volume = "29",
journal = "Journal of Knot Theory and its Ramifications",
issn = "0218-2165",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "10",

}

RIS

TY - JOUR

T1 - Black holes and topological surgery

AU - Antoniou, Stathis

AU - Kauffman, Louis H.

AU - Lambropoulou, Sofia

N1 - Publisher Copyright: © 2020 World Scientific Publishing Company. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/9/14

Y1 - 2020/9/14

N2 - We directly connect topological changes that can occur in mathematical three-space via surgery, with black hole formation, the formation of wormholes and new generalizations of these phenomena. This work widens the bridge between topology and natural sciences and creates a new platform for exploring geometrical physics.

AB - We directly connect topological changes that can occur in mathematical three-space via surgery, with black hole formation, the formation of wormholes and new generalizations of these phenomena. This work widens the bridge between topology and natural sciences and creates a new platform for exploring geometrical physics.

KW - black holes

KW - cosmic string

KW - cosmology

KW - dynamics

KW - Einstein-Rosen bridge

KW - entanglement

KW - ER = EPR

KW - geometric topology

KW - handle

KW - knot theory

KW - mathematical model

KW - Morse theory

KW - natural phenomena

KW - natural processes

KW - Poincaré dodecahedral space

KW - quantum cosmology

KW - quantum gravity

KW - reconnection

KW - three-manifold

KW - three-space

KW - three-sphere

KW - topological process

KW - Topological surgery

KW - topology

KW - wormholes

UR - http://www.scopus.com/inward/record.url?scp=85095422049&partnerID=8YFLogxK

U2 - 10.1142/S0218216520420109

DO - 10.1142/S0218216520420109

M3 - Article

AN - SCOPUS:85095422049

VL - 29

JO - Journal of Knot Theory and its Ramifications

JF - Journal of Knot Theory and its Ramifications

SN - 0218-2165

IS - 10

M1 - 2042010

ER -

ID: 26001466