Standard

Basics of the Quasiconformal Analysis of a Two-Index Scale of Spatial Mappings. / Vodopyanov, S. K.

в: Siberian Mathematical Journal, Том 59, № 5, 01.09.2018, стр. 805-834.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Vodopyanov SK. Basics of the Quasiconformal Analysis of a Two-Index Scale of Spatial Mappings. Siberian Mathematical Journal. 2018 сент. 1;59(5):805-834. doi: 10.1134/S0037446618050075

Author

Vodopyanov, S. K. / Basics of the Quasiconformal Analysis of a Two-Index Scale of Spatial Mappings. в: Siberian Mathematical Journal. 2018 ; Том 59, № 5. стр. 805-834.

BibTeX

@article{9c4163f46b014efeb8530922ed772f98,
title = "Basics of the Quasiconformal Analysis of a Two-Index Scale of Spatial Mappings",
abstract = "We define a scale of mappings that depends on two real parameters p and q, n−1 ≤ q ≤ p < ∞ and a weight function θ. In the case of q = p = n, θ ≡ 1, we obtain the well-known mappings with bounded distortion. Mappings of a two-index scale inherit many properties of mappings with bounded distortion. They are used for solving a few problems of global analysis and applied problems.",
keywords = "capacity estimate, quasiconformal analysis, Sobolev space, theorem on removable singularities",
author = "Vodopyanov, {S. K.}",
note = "Publisher Copyright: {\textcopyright} 2018, Pleiades Publishing, Ltd.",
year = "2018",
month = sep,
day = "1",
doi = "10.1134/S0037446618050075",
language = "English",
volume = "59",
pages = "805--834",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "5",

}

RIS

TY - JOUR

T1 - Basics of the Quasiconformal Analysis of a Two-Index Scale of Spatial Mappings

AU - Vodopyanov, S. K.

N1 - Publisher Copyright: © 2018, Pleiades Publishing, Ltd.

PY - 2018/9/1

Y1 - 2018/9/1

N2 - We define a scale of mappings that depends on two real parameters p and q, n−1 ≤ q ≤ p < ∞ and a weight function θ. In the case of q = p = n, θ ≡ 1, we obtain the well-known mappings with bounded distortion. Mappings of a two-index scale inherit many properties of mappings with bounded distortion. They are used for solving a few problems of global analysis and applied problems.

AB - We define a scale of mappings that depends on two real parameters p and q, n−1 ≤ q ≤ p < ∞ and a weight function θ. In the case of q = p = n, θ ≡ 1, we obtain the well-known mappings with bounded distortion. Mappings of a two-index scale inherit many properties of mappings with bounded distortion. They are used for solving a few problems of global analysis and applied problems.

KW - capacity estimate

KW - quasiconformal analysis

KW - Sobolev space

KW - theorem on removable singularities

UR - http://www.scopus.com/inward/record.url?scp=85057505463&partnerID=8YFLogxK

U2 - 10.1134/S0037446618050075

DO - 10.1134/S0037446618050075

M3 - Article

VL - 59

SP - 805

EP - 834

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 5

ER -

ID: 17670761