Результаты исследований: Научные публикации в периодических изданиях › обзорная статья › Рецензирование
At the interface of three nucleic acids : The role of RNA-binding proteins and poly(ADP-ribose) in DNA repair. / Alemasova, E. E.; Lavrik, O. I.
в: Acta Naturae, Том 9, № 2, 2017, стр. 4-16.Результаты исследований: Научные публикации в периодических изданиях › обзорная статья › Рецензирование
}
TY - JOUR
T1 - At the interface of three nucleic acids
T2 - The role of RNA-binding proteins and poly(ADP-ribose) in DNA repair
AU - Alemasova, E. E.
AU - Lavrik, O. I.
PY - 2017
Y1 - 2017
N2 - RNA-binding proteins (RBPs) regulate RNA metabolism, from synthesis to decay. When bound to RNA, RBPs act as guardians of the genome integrity at the different levels, from DNA damage prevention to the post-transcriptional regulation of gene expression. Recently, RBPs have been shown to participate in DNA repair. This fact is of special interest as DNA repair pathways do not generally involve RNA. DNA damage in higher organisms triggers the formation of the RNA-like polymer - poly(ADP-ribose) (PAR). Nucleic acid-like properties allow PAR to recruit DNA- and RNA-binding proteins to the site of DNA damage. It is suggested that poly(ADP-ribose) and RBPs not only modulate the activities of DNA repair factors, but that they also play an important role in the formation of transient repairosome complexes in the nucleus. Cytoplasmic biomolecules are subjected to similar sorting during the formation of RNA assemblages by functionally related mRNAs and promiscuous RBPs. The Y-box-binding protein 1 (YB-1) is the major component of cytoplasmic RNA granules. Although YB-1 is a classic RNA-binding protein, it is now regarded as a non-canonical factor of DNA repair.
AB - RNA-binding proteins (RBPs) regulate RNA metabolism, from synthesis to decay. When bound to RNA, RBPs act as guardians of the genome integrity at the different levels, from DNA damage prevention to the post-transcriptional regulation of gene expression. Recently, RBPs have been shown to participate in DNA repair. This fact is of special interest as DNA repair pathways do not generally involve RNA. DNA damage in higher organisms triggers the formation of the RNA-like polymer - poly(ADP-ribose) (PAR). Nucleic acid-like properties allow PAR to recruit DNA- and RNA-binding proteins to the site of DNA damage. It is suggested that poly(ADP-ribose) and RBPs not only modulate the activities of DNA repair factors, but that they also play an important role in the formation of transient repairosome complexes in the nucleus. Cytoplasmic biomolecules are subjected to similar sorting during the formation of RNA assemblages by functionally related mRNAs and promiscuous RBPs. The Y-box-binding protein 1 (YB-1) is the major component of cytoplasmic RNA granules. Although YB-1 is a classic RNA-binding protein, it is now regarded as a non-canonical factor of DNA repair.
KW - DNA repair
KW - Intrinsically disordered proteins
KW - Poly(ADP-ribose)
KW - RNA-binding proteins
KW - Y-box-binding protein 1
UR - http://www.scopus.com/inward/record.url?scp=85021356879&partnerID=8YFLogxK
U2 - 10.32607/20758251-2017-9-2-4-16
DO - 10.32607/20758251-2017-9-2-4-16
M3 - Review article
AN - SCOPUS:85021356879
VL - 9
SP - 4
EP - 16
JO - Acta Naturae
JF - Acta Naturae
SN - 2075-8251
IS - 2
ER -
ID: 8681008