Standard

Asymptotic properties of solutions in a model of antibacterial immune response. / Skvortsova, Maria Aleksandrovna.

в: Сибирские электронные математические известия, Том 15, 01.01.2018, стр. 1198-1215.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Skvortsova, MA 2018, 'Asymptotic properties of solutions in a model of antibacterial immune response', Сибирские электронные математические известия, Том. 15, стр. 1198-1215. https://doi.org/10.17377/semi.2018.15.097

APA

Skvortsova, M. A. (2018). Asymptotic properties of solutions in a model of antibacterial immune response. Сибирские электронные математические известия, 15, 1198-1215. https://doi.org/10.17377/semi.2018.15.097

Vancouver

Skvortsova MA. Asymptotic properties of solutions in a model of antibacterial immune response. Сибирские электронные математические известия. 2018 янв. 1;15:1198-1215. doi: 10.17377/semi.2018.15.097

Author

Skvortsova, Maria Aleksandrovna. / Asymptotic properties of solutions in a model of antibacterial immune response. в: Сибирские электронные математические известия. 2018 ; Том 15. стр. 1198-1215.

BibTeX

@article{ec0539a157fa40189996c3ed774f2096,
title = "Asymptotic properties of solutions in a model of antibacterial immune response",
abstract = "In the present paper we consider a model of antibacterial immune response proposed by G.I. Marchuk. The model is described by a system of differential equations with three delays. We study the asymptotic stability of the stationary solution corresponding to a healthy organism. We obtain estimates of the attraction set of this solution and establish estimates of solutions characterizing the stabilization rate at infinity. The results are obtained using a modified Lyapunov-Krasovskii functional.",
keywords = "Antibacterial immune response, Asymptotic stability, Attraction set, Delay differential equations, Estimates of solutions, Modified Lyapunov-Krasovskii functional",
author = "Skvortsova, {Maria Aleksandrovna}",
year = "2018",
month = jan,
day = "1",
doi = "10.17377/semi.2018.15.097",
language = "English",
volume = "15",
pages = "1198--1215",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Asymptotic properties of solutions in a model of antibacterial immune response

AU - Skvortsova, Maria Aleksandrovna

PY - 2018/1/1

Y1 - 2018/1/1

N2 - In the present paper we consider a model of antibacterial immune response proposed by G.I. Marchuk. The model is described by a system of differential equations with three delays. We study the asymptotic stability of the stationary solution corresponding to a healthy organism. We obtain estimates of the attraction set of this solution and establish estimates of solutions characterizing the stabilization rate at infinity. The results are obtained using a modified Lyapunov-Krasovskii functional.

AB - In the present paper we consider a model of antibacterial immune response proposed by G.I. Marchuk. The model is described by a system of differential equations with three delays. We study the asymptotic stability of the stationary solution corresponding to a healthy organism. We obtain estimates of the attraction set of this solution and establish estimates of solutions characterizing the stabilization rate at infinity. The results are obtained using a modified Lyapunov-Krasovskii functional.

KW - Antibacterial immune response

KW - Asymptotic stability

KW - Attraction set

KW - Delay differential equations

KW - Estimates of solutions

KW - Modified Lyapunov-Krasovskii functional

UR - http://www.scopus.com/inward/record.url?scp=85074907585&partnerID=8YFLogxK

U2 - 10.17377/semi.2018.15.097

DO - 10.17377/semi.2018.15.097

M3 - Article

AN - SCOPUS:85074907585

VL - 15

SP - 1198

EP - 1215

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 22320229