Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Application of neural networks to determine the discrete spectrum of the direct Zakharov - Shabat problem. / Sedov, E. V.; Chekhovskoy, I. S.; Prilepsky, J. E. и др.
в: Quantum Electronics, Том 50, № 12, 12.2020, стр. 1105-1109.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Application of neural networks to determine the discrete spectrum of the direct Zakharov - Shabat problem
AU - Sedov, E. V.
AU - Chekhovskoy, I. S.
AU - Prilepsky, J. E.
AU - Fedoruk, M. P.
N1 - Funding Information: The work was supported by the Fund of the President of the Russian Federation for State Support of Young Russian Scientists (Grant No. MK-677.2020.9). The work of I.S. Chekhovskoy was supported by the state assignment for fundamental research (FSUS-2020-0034), and the work of J.E. Prilepsky was supported by the Leverhulme Trust (Project RPG-2018-063). Publisher Copyright: © 2020 Kvantovaya Elektronika, Turpion Ltd and IOP Publishing Ltd. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/12
Y1 - 2020/12
N2 - A neural network architecture is proposed to determine the number of solitons generated by random processes in optical wavelength-division multiplexed telecommunication systems with QPSK, 16-QAM, 64-QAM, and 1024-QAM modulation. The dependence of the prediction quality of a neural network with a special architecture on the number of soliton modes in the signal and the parameters of this signal is studied.
AB - A neural network architecture is proposed to determine the number of solitons generated by random processes in optical wavelength-division multiplexed telecommunication systems with QPSK, 16-QAM, 64-QAM, and 1024-QAM modulation. The dependence of the prediction quality of a neural network with a special architecture on the number of soliton modes in the signal and the parameters of this signal is studied.
KW - inverse scattering problem method
KW - machine learning
KW - neural networks
KW - nonlinear Fourier transform
KW - nonlinear Schrödinger equation
KW - optical telecommunication systems
KW - wavelength-division multiplexing
KW - Zakharov - Shabat problem
UR - http://www.scopus.com/inward/record.url?scp=85098275474&partnerID=8YFLogxK
U2 - 10.1070/QEL17463
DO - 10.1070/QEL17463
M3 - Article
AN - SCOPUS:85098275474
VL - 50
SP - 1105
EP - 1109
JO - Quantum Electronics
JF - Quantum Electronics
SN - 1063-7818
IS - 12
ER -
ID: 27296719