Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations. / Kuznetsov, Ivan V.; Sazhenkov, Sergey A.
в: Сибирские электронные математические известия, Том 15, 01.01.2018, стр. 1158-1173.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations
AU - Kuznetsov, Ivan V.
AU - Sazhenkov, Sergey A.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - The results formulated in (I.V. Kuznetsov, Sib. Elect. Math. Rep. 14 (2017), 710-731) are extended onto the multi-time case. We prove existence and uniqueness of kinetic solutions to genuinely nonlinear forward-backward ultra-parabolic equations and show that kinetic solutions do not depend on the anisotropic elliptic regularization.
AB - The results formulated in (I.V. Kuznetsov, Sib. Elect. Math. Rep. 14 (2017), 710-731) are extended onto the multi-time case. We prove existence and uniqueness of kinetic solutions to genuinely nonlinear forward-backward ultra-parabolic equations and show that kinetic solutions do not depend on the anisotropic elliptic regularization.
KW - Entropy solution
KW - Forward-backward ultra-parabolic equation
KW - Kinetic solution
UR - http://www.scopus.com/inward/record.url?scp=85074955522&partnerID=8YFLogxK
U2 - 10.17377/semi.2018.15.094
DO - 10.17377/semi.2018.15.094
M3 - Article
AN - SCOPUS:85074955522
VL - 15
SP - 1158
EP - 1173
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 22318253