Standard

Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations. / Kuznetsov, Ivan V.; Sazhenkov, Sergey A.

в: Сибирские электронные математические известия, Том 15, 01.01.2018, стр. 1158-1173.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kuznetsov, IV & Sazhenkov, SA 2018, 'Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations', Сибирские электронные математические известия, Том. 15, стр. 1158-1173. https://doi.org/10.17377/semi.2018.15.094

APA

Vancouver

Kuznetsov IV, Sazhenkov SA. Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations. Сибирские электронные математические известия. 2018 янв. 1;15:1158-1173. doi: 10.17377/semi.2018.15.094

Author

Kuznetsov, Ivan V. ; Sazhenkov, Sergey A. / Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations. в: Сибирские электронные математические известия. 2018 ; Том 15. стр. 1158-1173.

BibTeX

@article{ee227888db4a47f08145ae1d7f323c81,
title = "Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations",
abstract = "The results formulated in (I.V. Kuznetsov, Sib. Elect. Math. Rep. 14 (2017), 710-731) are extended onto the multi-time case. We prove existence and uniqueness of kinetic solutions to genuinely nonlinear forward-backward ultra-parabolic equations and show that kinetic solutions do not depend on the anisotropic elliptic regularization.",
keywords = "Entropy solution, Forward-backward ultra-parabolic equation, Kinetic solution",
author = "Kuznetsov, {Ivan V.} and Sazhenkov, {Sergey A.}",
year = "2018",
month = jan,
day = "1",
doi = "10.17377/semi.2018.15.094",
language = "English",
volume = "15",
pages = "1158--1173",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations

AU - Kuznetsov, Ivan V.

AU - Sazhenkov, Sergey A.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - The results formulated in (I.V. Kuznetsov, Sib. Elect. Math. Rep. 14 (2017), 710-731) are extended onto the multi-time case. We prove existence and uniqueness of kinetic solutions to genuinely nonlinear forward-backward ultra-parabolic equations and show that kinetic solutions do not depend on the anisotropic elliptic regularization.

AB - The results formulated in (I.V. Kuznetsov, Sib. Elect. Math. Rep. 14 (2017), 710-731) are extended onto the multi-time case. We prove existence and uniqueness of kinetic solutions to genuinely nonlinear forward-backward ultra-parabolic equations and show that kinetic solutions do not depend on the anisotropic elliptic regularization.

KW - Entropy solution

KW - Forward-backward ultra-parabolic equation

KW - Kinetic solution

UR - http://www.scopus.com/inward/record.url?scp=85074955522&partnerID=8YFLogxK

U2 - 10.17377/semi.2018.15.094

DO - 10.17377/semi.2018.15.094

M3 - Article

AN - SCOPUS:85074955522

VL - 15

SP - 1158

EP - 1173

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 22318253