Standard

Anisotropic tomography of Hokkaido reveals delamination-induced flow above a subducting slab. / Koulakov, Ivan; Kukarina, Ekaterina; Fathi, Ismail Husain и др.

в: Journal of Geophysical Research: Solid Earth, Том 120, № 5, 01.05.2015, стр. 3219-3239.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Koulakov, I, Kukarina, E, Fathi, IH, El Khrepy, S & Al-Arifi, N 2015, 'Anisotropic tomography of Hokkaido reveals delamination-induced flow above a subducting slab', Journal of Geophysical Research: Solid Earth, Том. 120, № 5, стр. 3219-3239. https://doi.org/10.1002/2014JB011823

APA

Koulakov, I., Kukarina, E., Fathi, I. H., El Khrepy, S., & Al-Arifi, N. (2015). Anisotropic tomography of Hokkaido reveals delamination-induced flow above a subducting slab. Journal of Geophysical Research: Solid Earth, 120(5), 3219-3239. https://doi.org/10.1002/2014JB011823

Vancouver

Koulakov I, Kukarina E, Fathi IH, El Khrepy S, Al-Arifi N. Anisotropic tomography of Hokkaido reveals delamination-induced flow above a subducting slab. Journal of Geophysical Research: Solid Earth. 2015 май 1;120(5):3219-3239. doi: 10.1002/2014JB011823

Author

Koulakov, Ivan ; Kukarina, Ekaterina ; Fathi, Ismail Husain и др. / Anisotropic tomography of Hokkaido reveals delamination-induced flow above a subducting slab. в: Journal of Geophysical Research: Solid Earth. 2015 ; Том 120, № 5. стр. 3219-3239.

BibTeX

@article{962ac2b810d2452099fa52f6a298d1dd,
title = "Anisotropic tomography of Hokkaido reveals delamination-induced flow above a subducting slab",
abstract = "We present a new 3-D anisotropic seismic model for the crust and upper mantle beneath Hokkaido (Japan) based on tomographic inversion of P and S arrival times from a regional seismic database. The P model is parameterized with three parameters at each point that describe the azimuthal anisotropy; the S model is represented isotropically. The isotropic P and S velocity anomalies match nearly perfectly. In the crust, they show a prominent linear anomaly in central Hokkaido along the Kamuikotan and Hidaka Belts, which represents the area of eastward underthrusting of the Japan Block underneath the Kuril fore arc. We interpret the high-velocity anomaly beneath the Hidaka zone as being delaminated mafic crust and entrained mantle lithosphere, which developed due to crustal shortening in the collision zone. One of our vertical sections shows a very unusual configuration for a subduction zone: a low-velocity slab is overlain by a high-velocity body in the mantle wedge. We propose that the high-velocity delaminated material sinking along the slab surface prevents the escape of fluids and melts from the upper part of the slab, where they are generated due to phase transitions. As a result, a large portion of the fluids is entrained downward and lowers the seismic velocities in the slab. The azimuthal anisotropy in the crust clearly corresponds to the major tectonic units and delineates the major suture zones. In the mantle, the anisotropy has a fan-shaped configuration and most likely represents the deviating of flows starting in southern Hokkaido and splitting into three directions. The western and eastern flows proceed toward the two volcanic groups on Hokkaido, and they may carry with them additional material to trigger the characteristic caldera-forming eruptions in these groups",
keywords = "anisotropy, delamination, Hokkaido, seismic tomography, subduction, volcanism",
author = "Ivan Koulakov and Ekaterina Kukarina and Fathi, {Ismail Husain} and {El Khrepy}, Sami and Nassir Al-Arifi",
year = "2015",
month = may,
day = "1",
doi = "10.1002/2014JB011823",
language = "English",
volume = "120",
pages = "3219--3239",
journal = "Journal of Geophysical Research: Solid Earth",
issn = "2169-9313",
publisher = "Wiley-Blackwell",
number = "5",

}

RIS

TY - JOUR

T1 - Anisotropic tomography of Hokkaido reveals delamination-induced flow above a subducting slab

AU - Koulakov, Ivan

AU - Kukarina, Ekaterina

AU - Fathi, Ismail Husain

AU - El Khrepy, Sami

AU - Al-Arifi, Nassir

PY - 2015/5/1

Y1 - 2015/5/1

N2 - We present a new 3-D anisotropic seismic model for the crust and upper mantle beneath Hokkaido (Japan) based on tomographic inversion of P and S arrival times from a regional seismic database. The P model is parameterized with three parameters at each point that describe the azimuthal anisotropy; the S model is represented isotropically. The isotropic P and S velocity anomalies match nearly perfectly. In the crust, they show a prominent linear anomaly in central Hokkaido along the Kamuikotan and Hidaka Belts, which represents the area of eastward underthrusting of the Japan Block underneath the Kuril fore arc. We interpret the high-velocity anomaly beneath the Hidaka zone as being delaminated mafic crust and entrained mantle lithosphere, which developed due to crustal shortening in the collision zone. One of our vertical sections shows a very unusual configuration for a subduction zone: a low-velocity slab is overlain by a high-velocity body in the mantle wedge. We propose that the high-velocity delaminated material sinking along the slab surface prevents the escape of fluids and melts from the upper part of the slab, where they are generated due to phase transitions. As a result, a large portion of the fluids is entrained downward and lowers the seismic velocities in the slab. The azimuthal anisotropy in the crust clearly corresponds to the major tectonic units and delineates the major suture zones. In the mantle, the anisotropy has a fan-shaped configuration and most likely represents the deviating of flows starting in southern Hokkaido and splitting into three directions. The western and eastern flows proceed toward the two volcanic groups on Hokkaido, and they may carry with them additional material to trigger the characteristic caldera-forming eruptions in these groups

AB - We present a new 3-D anisotropic seismic model for the crust and upper mantle beneath Hokkaido (Japan) based on tomographic inversion of P and S arrival times from a regional seismic database. The P model is parameterized with three parameters at each point that describe the azimuthal anisotropy; the S model is represented isotropically. The isotropic P and S velocity anomalies match nearly perfectly. In the crust, they show a prominent linear anomaly in central Hokkaido along the Kamuikotan and Hidaka Belts, which represents the area of eastward underthrusting of the Japan Block underneath the Kuril fore arc. We interpret the high-velocity anomaly beneath the Hidaka zone as being delaminated mafic crust and entrained mantle lithosphere, which developed due to crustal shortening in the collision zone. One of our vertical sections shows a very unusual configuration for a subduction zone: a low-velocity slab is overlain by a high-velocity body in the mantle wedge. We propose that the high-velocity delaminated material sinking along the slab surface prevents the escape of fluids and melts from the upper part of the slab, where they are generated due to phase transitions. As a result, a large portion of the fluids is entrained downward and lowers the seismic velocities in the slab. The azimuthal anisotropy in the crust clearly corresponds to the major tectonic units and delineates the major suture zones. In the mantle, the anisotropy has a fan-shaped configuration and most likely represents the deviating of flows starting in southern Hokkaido and splitting into three directions. The western and eastern flows proceed toward the two volcanic groups on Hokkaido, and they may carry with them additional material to trigger the characteristic caldera-forming eruptions in these groups

KW - anisotropy

KW - delamination

KW - Hokkaido

KW - seismic tomography

KW - subduction

KW - volcanism

UR - http://www.scopus.com/inward/record.url?scp=85027943686&partnerID=8YFLogxK

U2 - 10.1002/2014JB011823

DO - 10.1002/2014JB011823

M3 - Article

AN - SCOPUS:85027943686

VL - 120

SP - 3219

EP - 3239

JO - Journal of Geophysical Research: Solid Earth

JF - Journal of Geophysical Research: Solid Earth

SN - 2169-9313

IS - 5

ER -

ID: 25708219