Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
An overview of the Eight International Olympiad in Cryptography ''Non-Stop University CRYPTO''. / Gorodilova, A. A.; Tokareva, N. N.; Agievich, S. V. и др.
в: Siberian Electronic Mathematical Reports, Том 19, № 1, 2022, стр. А9-А37.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - An overview of the Eight International Olympiad in Cryptography ''Non-Stop University CRYPTO''
AU - Gorodilova, A. A.
AU - Tokareva, N. N.
AU - Agievich, S. V.
AU - Beterov, I. I.
AU - Beyne, T.
AU - Budaghyan, L.
AU - Carlet, C.
AU - Dhooghe, S.
AU - Idrisova, V. A.
AU - Kolomeec, N. A.
AU - Kutsenko, A. V.
AU - Malygina, E. S.
AU - Mouha, N.
AU - Pudovkina, M. A.
AU - Sica, F.
AU - Udovenko, A. N.
N1 - Funding Information: The work of the first, second, ninth, tenth, eleventh authors was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0018). Received May, 6, 2022, published May, 26, 2022. Publisher Copyright: © 2022. Gorodilova A.A., Tokareva N.N., Agievich S.V., Beterov I.I., Beyne T., Budaghyan L., Carlet, C., Dhooghe S., Idrisova V.A., Kolomeec N.A., Kutsenko A.V., Malygina E.S., Mouha N., Pudovkina M.A., Sica F., Udovenko A.N.
PY - 2022
Y1 - 2022
N2 - Non-Stop University CRYPTO is the International Olympiad in Cryptography that was held for the eight time in 2021. Hundreds of university and school students, professionals from 33 countries worked on mathematical problems in cryptography during a week. The aim of the Olympiad is to attract attention to curious and even open scientific problems of modern cryptography. In this paper, problems and their solutions of the Olympiad'2021 are presented. We consider 19 problems of varying difficulty and topics: ciphers, online machines, passwords, binary strings, permutations, quantum circuits, historical ciphers, elliptic curves, masking, implementation on a chip, etc. We discuss several open problems on quantum error correction, finding special permutations and s-Boolean sharing of a function, obtaining new bounds on the distance to affine vectorial functions.
AB - Non-Stop University CRYPTO is the International Olympiad in Cryptography that was held for the eight time in 2021. Hundreds of university and school students, professionals from 33 countries worked on mathematical problems in cryptography during a week. The aim of the Olympiad is to attract attention to curious and even open scientific problems of modern cryptography. In this paper, problems and their solutions of the Olympiad'2021 are presented. We consider 19 problems of varying difficulty and topics: ciphers, online machines, passwords, binary strings, permutations, quantum circuits, historical ciphers, elliptic curves, masking, implementation on a chip, etc. We discuss several open problems on quantum error correction, finding special permutations and s-Boolean sharing of a function, obtaining new bounds on the distance to affine vectorial functions.
KW - Ciphers
KW - Cryptography
KW - Electronic voting
KW - Masking
KW - Nsucrypto
KW - Olympiad
KW - Orthogonal arrays
KW - Permutations
KW - Quantum error correction
KW - S-boolean sharing
UR - http://www.scopus.com/inward/record.url?scp=85132592944&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/dc5beb4e-9e03-3a43-8a83-5d4a3ff5f1d1/
U2 - 10.33048/semi.2022.19.023
DO - 10.33048/semi.2022.19.023
M3 - Article
AN - SCOPUS:85132592944
VL - 19
SP - А9-А37
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
IS - 1
ER -
ID: 36452687