Standard

An O(nlogn)-Time Algorithm for Linearly Ordered Packing of 2-Bar Charts into OPT+1 Bins. / Ерзин, Адиль Ильясович; Кононов, Александр Вениаминович; Назаренко, Степан Андреевич и др.

Mathematical Optimization Theory and Operations Research - 22nd International Conference, MOTOR 2023, Proceedings. ред. / Gerhard Goos; Juris Hartmanis. Springer Science and Business Media Deutschland GmbH, 2023. стр. 122-133 (Communications in Computer and Information Science; Том 1881 CCIS).

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаяРецензирование

Harvard

Ерзин, АИ, Кононов, АВ, Назаренко, СА & Шаранхаев, КИ 2023, An O(nlogn)-Time Algorithm for Linearly Ordered Packing of 2-Bar Charts into OPT+1 Bins. в G Goos & J Hartmanis (ред.), Mathematical Optimization Theory and Operations Research - 22nd International Conference, MOTOR 2023, Proceedings. Communications in Computer and Information Science, Том. 1881 CCIS, Springer Science and Business Media Deutschland GmbH, стр. 122-133, 22nd International Conference on Mathematical Optimization Theory and Operations Research, Екатеринбург, Российская Федерация, 02.07.2023. https://doi.org/10.1007/978-3-031-43257-6_10

APA

Ерзин, А. И., Кононов, А. В., Назаренко, С. А., & Шаранхаев, К. И. (2023). An O(nlogn)-Time Algorithm for Linearly Ordered Packing of 2-Bar Charts into OPT+1 Bins. в G. Goos, & J. Hartmanis (Ред.), Mathematical Optimization Theory and Operations Research - 22nd International Conference, MOTOR 2023, Proceedings (стр. 122-133). (Communications in Computer and Information Science; Том 1881 CCIS). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-43257-6_10

Vancouver

Ерзин АИ, Кононов АВ, Назаренко СА, Шаранхаев КИ. An O(nlogn)-Time Algorithm for Linearly Ordered Packing of 2-Bar Charts into OPT+1 Bins. в Goos G, Hartmanis J, Редакторы, Mathematical Optimization Theory and Operations Research - 22nd International Conference, MOTOR 2023, Proceedings. Springer Science and Business Media Deutschland GmbH. 2023. стр. 122-133. (Communications in Computer and Information Science). doi: 10.1007/978-3-031-43257-6_10

Author

Ерзин, Адиль Ильясович ; Кононов, Александр Вениаминович ; Назаренко, Степан Андреевич и др. / An O(nlogn)-Time Algorithm for Linearly Ordered Packing of 2-Bar Charts into OPT+1 Bins. Mathematical Optimization Theory and Operations Research - 22nd International Conference, MOTOR 2023, Proceedings. Редактор / Gerhard Goos ; Juris Hartmanis. Springer Science and Business Media Deutschland GmbH, 2023. стр. 122-133 (Communications in Computer and Information Science).

BibTeX

@inproceedings{865c54c2e6e9455fb6042fd9723c7c69,
title = "An O(nlogn)-Time Algorithm for Linearly Ordered Packing of 2-Bar Charts into OPT+1 Bins",
abstract = "Given a sequence of bins and n bar charts consisting of two bars each (2-BCs). Every bar has a positive height not exceeding 1. Each bin can contain any subset of bars of total height at most 1. It is required to pack all 2-BCs into the minimal number of bins so that the bars of each 2-BC do not change their order and occupy adjacent bins. Previously, a special case of the problem was considered where the first bars of any two 2-BCs cannot be placed into the same bin. For this case an O(n2)-time algorithm that constructs a packing of length at most OPT+1, where OPT is the optimum, was presented. In this paper, we propose a new, less time-consuming algorithm that also constructs a packing of length at most OPT+1 for the same case of the problem with time complexity equals to O(nlogn).",
keywords = "Approximation, Bar charts, Packing",
author = "Ерзин, {Адиль Ильясович} and Кононов, {Александр Вениаминович} and Назаренко, {Степан Андреевич} and Шаранхаев, {Константин Иванович}",
year = "2023",
doi = "10.1007/978-3-031-43257-6_10",
language = "English",
isbn = "9783031353048",
series = "Communications in Computer and Information Science",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "122--133",
editor = "Gerhard Goos and Juris Hartmanis",
booktitle = "Mathematical Optimization Theory and Operations Research - 22nd International Conference, MOTOR 2023, Proceedings",
address = "Germany",
note = "22nd International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2023 ; Conference date: 02-07-2023 Through 08-07-2023",

}

RIS

TY - GEN

T1 - An O(nlogn)-Time Algorithm for Linearly Ordered Packing of 2-Bar Charts into OPT+1 Bins

AU - Ерзин, Адиль Ильясович

AU - Кононов, Александр Вениаминович

AU - Назаренко, Степан Андреевич

AU - Шаранхаев, Константин Иванович

N1 - Conference code: 22

PY - 2023

Y1 - 2023

N2 - Given a sequence of bins and n bar charts consisting of two bars each (2-BCs). Every bar has a positive height not exceeding 1. Each bin can contain any subset of bars of total height at most 1. It is required to pack all 2-BCs into the minimal number of bins so that the bars of each 2-BC do not change their order and occupy adjacent bins. Previously, a special case of the problem was considered where the first bars of any two 2-BCs cannot be placed into the same bin. For this case an O(n2)-time algorithm that constructs a packing of length at most OPT+1, where OPT is the optimum, was presented. In this paper, we propose a new, less time-consuming algorithm that also constructs a packing of length at most OPT+1 for the same case of the problem with time complexity equals to O(nlogn).

AB - Given a sequence of bins and n bar charts consisting of two bars each (2-BCs). Every bar has a positive height not exceeding 1. Each bin can contain any subset of bars of total height at most 1. It is required to pack all 2-BCs into the minimal number of bins so that the bars of each 2-BC do not change their order and occupy adjacent bins. Previously, a special case of the problem was considered where the first bars of any two 2-BCs cannot be placed into the same bin. For this case an O(n2)-time algorithm that constructs a packing of length at most OPT+1, where OPT is the optimum, was presented. In this paper, we propose a new, less time-consuming algorithm that also constructs a packing of length at most OPT+1 for the same case of the problem with time complexity equals to O(nlogn).

KW - Approximation

KW - Bar charts

KW - Packing

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85174573258&origin=inward&txGid=498c35c2aec3baefae9c6c8ffcfd95e0

U2 - 10.1007/978-3-031-43257-6_10

DO - 10.1007/978-3-031-43257-6_10

M3 - Conference contribution

SN - 9783031353048

T3 - Communications in Computer and Information Science

SP - 122

EP - 133

BT - Mathematical Optimization Theory and Operations Research - 22nd International Conference, MOTOR 2023, Proceedings

A2 - Goos, Gerhard

A2 - Hartmanis, Juris

PB - Springer Science and Business Media Deutschland GmbH

T2 - 22nd International Conference on Mathematical Optimization Theory and Operations Research

Y2 - 2 July 2023 through 8 July 2023

ER -

ID: 55570853